
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/316011110

Ice particle morphology and microphysical properties of cirrus clouds inferred

from combined CALIOP-IIR measurements: Ice crystals in cirrus clouds

Article  in  Journal of Geophysical Research Atmospheres · April 2017

DOI: 10.1002/2016JD026080

CITATIONS

2

READS

171

6 authors, including:

Some of the authors of this publication are also working on these related projects:

Satellite observations of cloud View project

Improve radiative transfer modules in climate models View project

Masanori Saito

Texas A&M University

10 PUBLICATIONS   27 CITATIONS   

SEE PROFILE

Hironobu Iwabuchi

Tohoku University

65 PUBLICATIONS   744 CITATIONS   

SEE PROFILE

Guanglin Tang

Texas A&M University

16 PUBLICATIONS   44 CITATIONS   

SEE PROFILE

Miho Sekiguchi

Tokyo University of Marine Science and Technology

36 PUBLICATIONS   1,343 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Masanori Saito on 20 March 2018.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/316011110_Ice_particle_morphology_and_microphysical_properties_of_cirrus_clouds_inferred_from_combined_CALIOP-IIR_measurements_Ice_crystals_in_cirrus_clouds?enrichId=rgreq-088b6660128ae55e71661e29bb0df54c-XXX&enrichSource=Y292ZXJQYWdlOzMxNjAxMTExMDtBUzo2MDYzNTExNjg0MDE0MTFAMTUyMTU3Njc5Mjc1Mw%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/316011110_Ice_particle_morphology_and_microphysical_properties_of_cirrus_clouds_inferred_from_combined_CALIOP-IIR_measurements_Ice_crystals_in_cirrus_clouds?enrichId=rgreq-088b6660128ae55e71661e29bb0df54c-XXX&enrichSource=Y292ZXJQYWdlOzMxNjAxMTExMDtBUzo2MDYzNTExNjg0MDE0MTFAMTUyMTU3Njc5Mjc1Mw%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Satellite-observations-of-cloud?enrichId=rgreq-088b6660128ae55e71661e29bb0df54c-XXX&enrichSource=Y292ZXJQYWdlOzMxNjAxMTExMDtBUzo2MDYzNTExNjg0MDE0MTFAMTUyMTU3Njc5Mjc1Mw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Improve-radiative-transfer-modules-in-climate-models?enrichId=rgreq-088b6660128ae55e71661e29bb0df54c-XXX&enrichSource=Y292ZXJQYWdlOzMxNjAxMTExMDtBUzo2MDYzNTExNjg0MDE0MTFAMTUyMTU3Njc5Mjc1Mw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-088b6660128ae55e71661e29bb0df54c-XXX&enrichSource=Y292ZXJQYWdlOzMxNjAxMTExMDtBUzo2MDYzNTExNjg0MDE0MTFAMTUyMTU3Njc5Mjc1Mw%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Masanori_Saito6?enrichId=rgreq-088b6660128ae55e71661e29bb0df54c-XXX&enrichSource=Y292ZXJQYWdlOzMxNjAxMTExMDtBUzo2MDYzNTExNjg0MDE0MTFAMTUyMTU3Njc5Mjc1Mw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Masanori_Saito6?enrichId=rgreq-088b6660128ae55e71661e29bb0df54c-XXX&enrichSource=Y292ZXJQYWdlOzMxNjAxMTExMDtBUzo2MDYzNTExNjg0MDE0MTFAMTUyMTU3Njc5Mjc1Mw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Texas_A_M_University?enrichId=rgreq-088b6660128ae55e71661e29bb0df54c-XXX&enrichSource=Y292ZXJQYWdlOzMxNjAxMTExMDtBUzo2MDYzNTExNjg0MDE0MTFAMTUyMTU3Njc5Mjc1Mw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Masanori_Saito6?enrichId=rgreq-088b6660128ae55e71661e29bb0df54c-XXX&enrichSource=Y292ZXJQYWdlOzMxNjAxMTExMDtBUzo2MDYzNTExNjg0MDE0MTFAMTUyMTU3Njc5Mjc1Mw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Hironobu_Iwabuchi?enrichId=rgreq-088b6660128ae55e71661e29bb0df54c-XXX&enrichSource=Y292ZXJQYWdlOzMxNjAxMTExMDtBUzo2MDYzNTExNjg0MDE0MTFAMTUyMTU3Njc5Mjc1Mw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Hironobu_Iwabuchi?enrichId=rgreq-088b6660128ae55e71661e29bb0df54c-XXX&enrichSource=Y292ZXJQYWdlOzMxNjAxMTExMDtBUzo2MDYzNTExNjg0MDE0MTFAMTUyMTU3Njc5Mjc1Mw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Tohoku_University?enrichId=rgreq-088b6660128ae55e71661e29bb0df54c-XXX&enrichSource=Y292ZXJQYWdlOzMxNjAxMTExMDtBUzo2MDYzNTExNjg0MDE0MTFAMTUyMTU3Njc5Mjc1Mw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Hironobu_Iwabuchi?enrichId=rgreq-088b6660128ae55e71661e29bb0df54c-XXX&enrichSource=Y292ZXJQYWdlOzMxNjAxMTExMDtBUzo2MDYzNTExNjg0MDE0MTFAMTUyMTU3Njc5Mjc1Mw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Guanglin_Tang?enrichId=rgreq-088b6660128ae55e71661e29bb0df54c-XXX&enrichSource=Y292ZXJQYWdlOzMxNjAxMTExMDtBUzo2MDYzNTExNjg0MDE0MTFAMTUyMTU3Njc5Mjc1Mw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Guanglin_Tang?enrichId=rgreq-088b6660128ae55e71661e29bb0df54c-XXX&enrichSource=Y292ZXJQYWdlOzMxNjAxMTExMDtBUzo2MDYzNTExNjg0MDE0MTFAMTUyMTU3Njc5Mjc1Mw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Texas_A_M_University?enrichId=rgreq-088b6660128ae55e71661e29bb0df54c-XXX&enrichSource=Y292ZXJQYWdlOzMxNjAxMTExMDtBUzo2MDYzNTExNjg0MDE0MTFAMTUyMTU3Njc5Mjc1Mw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Guanglin_Tang?enrichId=rgreq-088b6660128ae55e71661e29bb0df54c-XXX&enrichSource=Y292ZXJQYWdlOzMxNjAxMTExMDtBUzo2MDYzNTExNjg0MDE0MTFAMTUyMTU3Njc5Mjc1Mw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Miho_Sekiguchi?enrichId=rgreq-088b6660128ae55e71661e29bb0df54c-XXX&enrichSource=Y292ZXJQYWdlOzMxNjAxMTExMDtBUzo2MDYzNTExNjg0MDE0MTFAMTUyMTU3Njc5Mjc1Mw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Miho_Sekiguchi?enrichId=rgreq-088b6660128ae55e71661e29bb0df54c-XXX&enrichSource=Y292ZXJQYWdlOzMxNjAxMTExMDtBUzo2MDYzNTExNjg0MDE0MTFAMTUyMTU3Njc5Mjc1Mw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Tokyo_University_of_Marine_Science_and_Technology?enrichId=rgreq-088b6660128ae55e71661e29bb0df54c-XXX&enrichSource=Y292ZXJQYWdlOzMxNjAxMTExMDtBUzo2MDYzNTExNjg0MDE0MTFAMTUyMTU3Njc5Mjc1Mw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Miho_Sekiguchi?enrichId=rgreq-088b6660128ae55e71661e29bb0df54c-XXX&enrichSource=Y292ZXJQYWdlOzMxNjAxMTExMDtBUzo2MDYzNTExNjg0MDE0MTFAMTUyMTU3Njc5Mjc1Mw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Masanori_Saito6?enrichId=rgreq-088b6660128ae55e71661e29bb0df54c-XXX&enrichSource=Y292ZXJQYWdlOzMxNjAxMTExMDtBUzo2MDYzNTExNjg0MDE0MTFAMTUyMTU3Njc5Mjc1Mw%3D%3D&el=1_x_10&_esc=publicationCoverPdf


Journal of Geophysical Research: Atmospheres

Ice particle morphology and microphysical properties of cirrus
clouds inferred from combined CALIOP-IIR measurements

Masanori Saito1 , Hironobu Iwabuchi1, Ping Yang2, Guanglin Tang2 , Michael D. King2,3 , and
Miho Sekiguchi4

1Department of Geophysics, Graduate School of Science, Tohoku University, Sendai, Japan, 2Department of Atmospheric
Sciences, Texas A&M University, College Station, Texas, USA, 3Laboratory for Atmospheric & Space Physics, University of
Colorado Boulder, Boulder, Colorado, USA, 4Department of Marine Electronics and Mechanical Engineering, Tokyo
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Abstract Ice particle morphology and microphysical properties of cirrus clouds are essential for
assessing radiative forcing associated with these clouds. We develop an optimal estimation-based
algorithm to infer cirrus cloud optical thickness (COT), cloud effective radius (CER), plate fraction including
quasi-horizontally oriented plates (HOPs), and the degree of surface roughness from the Cloud Aerosol
Lidar with Orthogonal Polarization (CALIOP) and the Infrared Imaging Radiometer (IIR) on the Cloud Aerosol
Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) platform. A simple but realistic ice particle
model is used, and the relevant bulk optical properties are computed using state-of-the-art light-scattering
computational capabilities. Rigorous estimation of uncertainties related to surface properties, atmospheric
gases, and cloud heterogeneity is performed. The results based on the present method show that COTs
are quite consistent with other satellite products and CERs essentially agree with the other counterparts.
A 1 month global analysis for April 2007, in which CALIPSO off-nadir angle is 0.3∘, shows that the HOP
has significant temperature-dependence and is critical to the lidar ratio when cloud temperature is
warmer than −40∘C. The lidar ratio is calculated from the bulk optical properties based on the inferred
parameters, showing robust temperature dependence. The median lidar ratio of cirrus clouds is
27–31 sr over the globe.

1. Introduction

Cirrus clouds cover 20% of the globe and play an essential role in Earth’s climate system [Liou and Yang, 2016].
The radiative effects of cirrus clouds greatly depend on their optical and microphysical properties such as
cloud optical thickness (COT) and cloud-particle effective radius (CER) [Hong et al., 2009] as well as their par-
ticle morphology [Key et al., 2002; Yi et al., 2013], which could even switch their radiative effects between
net cooling and warming effects on the atmosphere [Stephens et al., 1990]. Accurate estimation of global
average radiative effects is still challenging, partly because optical and microphysical properties of cirrus
clouds are not well known. Aircraft measurements in cirrus clouds served as a constraint on the properties
[Heymsfield et al., 2013]. However, reliability of in situ measurements of small ice crystals, to which cloud radia-
tive effects are very sensitive, is rather questionable due to potential ice shattering on probe inlets [Field et al.,
2003; Lawson, 2011], and the number of aircraft-based measurements is quite limited due to the expense of
the measurements.

Various satellite cloud remote sensing instruments have provided a vast amount of information in recent
decades. Numerous techniques have been developed to infer cloud optical and microphysical properties from
measurements by individual instruments such as passive and active sensors [Inoue, 1987; Nakajima and King,
1990; Parol et al., 1991; Vaughan et al., 2004]. Particularly, passive thermal infrared (TIR) radiometric measure-
ments are sensitive to optically thin clouds [Cooper and Garrett, 2010], and active lidar measurements can
supply vertical structure and geometric information in transparent clouds [Sassen et al., 2008], thereby giving
us new perspectives on cirrus clouds over the globe.

However, several possible sources of errors and biases on those products have been reported. With pas-
sive radiometric measurements, cloud reflectivity in visible and near-infrared wavelengths is strongly influ-
enced by cloud heterogeneity and the assumed ice particle texture, leading to systematic biases as well as
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angle-geometry-dependent local biases on both COT and CER retrievals [Várnai and Marshak, 2007; Yang et al.,
2008]. In TIR wavelengths, although impacts of ice particle morphology on the signals are small, the cloud
heterogeneity effect still exists and is not negligible [Fauchez et al., 2015]. Moreover, any multilayer cloud
system induces further biases on a retrieval quantity [Chang and Li, 2005] due to the single-layer approxi-
mation used in the vast majority of retrieval techniques. With active lidar measurements, vertical profiles of
extinction coefficient (namely, layer-COT profiles) are obtained by solving the lidar equation, which needs
prior knowledge of the extinction-to-backscatter ratio, or the so-called lidar ratio, in the cirrus cloud [Young
and Vaughan, 2009]. Accuracy of the COT retrievals hinges on quantitative reliability of the lidar ratio, which
has, however, substantial variability over the particle morphology. Current knowledge of the morphological
parameters of ice crystals in clouds is poor and quite limited. Furthermore, the presence of quasi-horizontally
oriented plate crystals (hereinafter referred to as HOP) in cirrus clouds provides specular reflection, resulting
in strong backscattering even if the fraction of such particles is a few percent [e.g., Sassen and Benson, 2001].
This is a significant obstacle for obtaining accurate COT retrievals from lidar measurements. As a result, inter-
comparisons among the retrievals with different techniques do not show good agreement [Holz et al., 2016],
which complicates our understanding of cirrus radiative effects. Further efforts to implement more realistic
ice particle morphologies and more representative cloud-atmosphere uncertainties in retrieval techniques
are needed.

Most knowledge of ice particle morphology is based on laboratory experiments [Bailey and Hallett, 2004;
Pfalzgraff et al., 2010; Magee et al., 2014] and aircraft in situ measurements [Lawson et al., 2006; Ulanowski et al.,
2014]. Measurements imply that ice particles are a mixture of ice particles with complex morphologies (e.g.,
column aggregates and irregular polycrystals) and pristine crystals (e.g., hexagonal plate and column), and
their fractions strongly depend on temperature and ice supersaturation. Since satellite polarimetric measure-
ments became available, global averages of ice particle morphological parameters have been investigated,
and results imply that roughened particles are more realistic than unroughened (smooth) particles [Baran and
Labonnote, 2006; Cole et al., 2013; Holz et al., 2016; Platnick et al., 2017] and that a column aggregate crystal
shape is most representative in ice clouds over the globe [Guignard et al., 2012; Cole et al., 2014]. Satellite lidar
measurements reveal that the population of HOP crystals is relatively large where air temperature is about
−20∘C [Yoshida et al., 2010]. Recently, several novel approaches have been developed to enable pixel-by-pixel
inference of ice particle surface roughness in optically thick ice clouds (generally, ! > ∼ 5) [van Diedenhoven
et al., 2012; Hioki et al., 2016], but available information of morphological parameters in optically thin clouds
is very limited.

The overarching goal of this paper is to improve understanding of particle morphology and microphysi-
cal properties in optically thin cirrus clouds. Since 2002, NASA has had a constellation of satellites on the
same orbit, which is referred to as the A-Train [Stephens et al., 2002]. The A-train constellation makes it pos-
sible to design algorithms that use multiple measurements at the pixel level. A combination of instruments
can enhance the total information content by compensating for the limitations of each of the instruments.
Delanoë and Hogan [2010] provided the DARDAR product that contains vertical profiles of extinction coeffi-
cient and CER inferred from combined lidar, radar, and TIR measurements. Two backscattering profiles from
both lidar and radar allowed inferences of vertical profiles of not only the extinction coefficient but also CERs
in opaque ice clouds, and TIR brightness temperatures (BTs) help to constrain both parameters where radar
signals are lost, improving accuracy of the retrievals. In addition, optimal estimation is a useful approach to
solve inversion problems based on the Bayesian theorem by taking account of uncertainties in the signals
and using prior knowledge to improve the retrievals [Rodgers, 2000]. Recent efforts permit more accurate
retrievals of ice cloud microphysical properties by taking into account multilayer clouds [e.g., Sourdeval et al.,
2015] and rigorously evaluated uncertainties associated with atmospheric gases and cloud properties [e.g.,
Wang et al., 2016]. Further treatment of uncertainties and relaxation of assumptions in algorithms possibly
make retrieval accuracy better and can tackle obstacles to infer particle morphology in optically thin clouds.
This paper demonstrates a method to infer ice water path (IWP), CER, surface temperature (TSFC), and two mor-
phological parameters (plate fraction (FPLT) and surface roughness of ice crystal aggregates ("2

POLY)) in a cirrus
cloud simultaneously from combined passive TIR and active lidar measurements on a pixel-by-pixel basis by
assuming a simple ice model that is a mixture of pristine hexagonal plates and aggregates. The lidar ratio,
HOP fraction, and COT are also derived in addition to the inferred parameters. Uncertainties associated with
measurement signals, atmospheric gases, surface properties, and cloud heterogeneity are taken into account
in the algorithm.

SAITO ET AL. ICE CRYSTALS IN CIRRUS CLOUDS 2
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Table 1. Data Used in the Method

Data Products Spatial Resolution Temporal Resolution

Measurements CALIOP L2 CLay 1 km —

Measurements IIR L2 Track 1 km —

Sea surface temperature MODIS L3 0.4167∘ 8 day mean

Land surface temperature MODIS L3 0.05∘ 8 day mean

Land surface emissivity BFED 0.05∘ Monthly

Atmospheric profile MERRA 1.25∘ , 42 level 3 h

Trace gas concentration Climatology Global Monthly

This paper is organized into the following sections: Section 2 describes detailed methodologies and data used
in the algorithm. Section 3 discusses methods of uncertainty evaluation. Section 4 provides results including
retrieval error analysis, various validations, and a 1 month global analysis. Conclusions and future prospects
are given in section 5.

2. Methodologies

The basic principle of an optimal estimation-based algorithm is to find a solution that best fits the physi-
cal model to the measurements under constraints of prior knowledge about the climatology of inference
parameters. In this section, first, the data and criteria for the method are explained. Next, forward models for
both TIR BT and lidar signals are briefly described. Finally, the optimal estimation method for the inferences
is given.

2.1. Data and Criteria
In this study, various data sources are used to handle realistic atmosphere-cloud conditions in the retrieval
algorithm as summarized in Table 1.

The Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) has been in orbit since 2006
[Winker et al., 2009]. The Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP) on the CALIPSO platform
yields vertical profiles of backscattering intensity at the two wavelengths: 532 nm and 1064 nm. Moreover,
the 532 nm channel, especially, has polarization capabilities for measuring the parallel and perpendicular
radiation components. The CALIOP level 2 cloud layer 1 km products (L2 CLay 1 km) in version 3.01 pro-
vides the layer-integrated total attenuated backscatter (IAB) and the depolarization ratio (DPR) at 532 nm
defined as

IAB = ∫
CBH

CTH

# ′
⟂(z) + # ′

∥(z)
cos $offndr

dz (1)

and

DPR =
∫ CBH

CTH # ′
⟂(z)dz

∫ CBH
CTH # ′

∥(z)dz
, (2)

where # ′
∥(z) and # ′

⟂(z) are the parallel and perpendicular components of attenuated backscatter signals as
functions of altitude z, respectively; $offndr is the off-nadir angle of the CALIOP pointing direction, and CTH and
CBH are cloud top height and cloud base height, respectively. The IAB and DPR are sensitive to HOPs, since
specular reflection causes strong backscattering and does not change polarization characteristics, namely,
causing a large IAB and low DPR. In addition to the two signals, CTH, CBH, and thermodynamic phase are
obtained from the L2 CLay 1 km product (shown near the end of this section). Another instrument on board
CALIPSO is the Imaging Infrared Radiometer (IIR), providing BTs at three channels in the split window wave-
lengths: 8.65, 10.6, and 12.05%m. The BTs (referred to as BT8.65, BT10.6, and BT12.05) have different characteristics
in ice absorption, making it feasible to infer both COT and CER from the split window bands. The IIR L2
Track product contains those three BTs on the CALIOP collocated track with a 1 km resolution, which permits
synergetic use of the CALIOP and IIR product easily.

For surface and meteorological properties, this study follows Iwabuchi et al. [2016] (hereinafter referred to as
I16) that uses multiple products and data, such as sea surface temperature/emissivity (SST/SSE), land surface
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Table 2. Pixel Data Criteria

Source Quantity Threshold

L2 CLay 1 km Cloud phase Ice or oriented ice crystals

L2 CLay 1 km Cloud layer Single

L2 CLay 1 km Cloud top height >6 km

L2 CLay 5 km Opacity flag Transparent

temperature/emissivity (LST/LSE), and vertical profiles of temperature and atmospheric gases, to apply the
analysis to the globe. The Moderate Resolution Imaging Spectroradiometer (MODIS) 8 day mean level 3 (L3)
product provides SST and LST with a root-mean-square error (RMSE) about 0.35–0.4 K and less than 1 K [Brown
et al., 1999; Wan and Li, 1997]. The LSE is from the Baseline-Fit Emissivity Database (BFED) monthly product that
guarantees a RMSE less than 0.01 [Seemann et al., 2008]. Atmospheric profiles including air temperature and
ozone and water vapor mixing ratios are obtained from the Modern-Era Retrospective analysis for Research
and Applications (MERRA) product [Rienecker et al., 2011]. Concentrations of carbon dioxide (CO2), methane
(CH4) and nitrous oxide (N2O) are set to global monthly mean values provided by the World Data Center for
Greenhouse Gases from the World Meteorological Organization Global Atmosphere Watch program [Tsutsumi
et al., 2009].

To select CALIOP-IIR collocated pixels (hereinafter referred to as “pixels”) containing single-layer ice clouds,
we use CTH, the feature classification flag, and the opacity flag available in CALIOP L2 CLay 1 km and 5 km
products. The data criteria are summarized in Table 2.

On the feature classification flag, cloud thermodynamic phase is determined on the basis of a relationship
between backscattering intensity and depolarization ratio in addition to spatial coherence in both param-
eters, determining “ice,” “water,” and “oriented ice crystals” for each layer [Hu et al., 2009]. We use pixels
determined as ice or oriented ice crystals for the analysis. In addition, the L2 CLay 1 km product shows the
number of cloud layers for each pixel; thus, single-layer clouds can be selected. Note that pixels containing a
multilayer cloud system with vertical distance between two clouds less than 1.5 km are treated as a single-layer
cloud to increase data availability. This study neglects the cloud layers detected with a horizontal average of
5 to 80 km stored in the L2 CLay 5 km product since these clouds are optically very thin and have only a slight
impact on TIR radiance, which will be discussed in section 3. Furthermore, the L2 CLay 5 km product has an
opacity flag that tells us if the cloud is transparent. CALIOP data for a transparent cloud guarantee reliability
of the CBH estimation.

2.2. Forward Models
A simple but realistic ice model is needed to calculate the bulk optical properties used for solving the radiative
transfer equation. The ice model in this study is assumed to be a mixture of hexagonal plates and aggre-
gates based on Bailey and Hallett [2004]. The plate fraction is defined as the number fraction of hexagonal
plates over all crystals. In natural cirrus clouds, hexagonal plates are likely to have quasi-horizontal orienta-
tions with small fluctuations of the tilting angle when the maximum diameter of the plate is greater than
100 μm, according to lidar observations [Sassen, 1980] as well as theoretical simulations [Bréon and Dubrulle,
2004]. We assume that hexagonal plates smaller (larger) than 100 μm are randomly (quasi-horizontally) ori-
ented according to Klett [1995]. The degree of surface roughness in conjunction with the hexagonal plates
is assumed to be 0 (smooth particle). The aspect ratio and tilting angle of HOP have significant impacts on
the single-scattering properties [Noel and Chepfer, 2004; Zhou et al., 2012]. The aspect ratios of plate crystals
were investigated by aircraft in situ measurements [Pruppacher and Klett, 1997], providing a parameterization
as 2 a

L
= 0.8038a0.5206, where a and L are the semiwidth and length of a hexagonal plate crystal. Variation of

the tilting angle is generally assumed to have a Gaussian distribution based on ground- and satellite-based
polarimetric measurements [Noel and Chepfer, 2004; Noel and Sassen, 2005]. Bréon and Dubrulle [2004] showed
the cumulative density distribution of the tilting angle of HOPs based on satellite polarimetric measurements
as well as aerodynamic simulations, implying that most HOPs have a tilting angle less than 1.0∘ in all clouds
but greater than 0.5∘ particularly in high clouds. In this study, the tilting angle variation of HOP follows find-
ings by Bréon’s work [see Bréon and Dubrulle, 2004, Figure 9] that shows a lognormal distribution of tilting
angle with average and sigma value of ln 0.9∘ and 0.6∘ over ice clouds when cloud top pressure (CTP) ranges
from 100 to 500 hPa. Moreover, we use the column aggregate shape model because previous studies imply
that this ice particle shape shows maximum consistency between observations and simulations in ice cloud
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reflectance on a global scale [Guignard et al., 2012; Cole et al., 2014]. The column aggregate model assumes
several degrees of surface roughness (0.001 to 0.7) defined by Yang and Liou [1998].

The single-scattering properties of ice crystals are calculated with state-of-the-art light scattering computa-
tional capabilities. Including the interference effect in the light scattering compilation is essential to obtain
accurate scattering properties around the 180∘ backward direction for HOP [Borovoi and Grishin, 2003]. The
Physical Geometric Optics Hybrid (PGOH) [Bi et al., 2011] is feasible for calculating the optical properties of
oriented particles and is applicable for intermediate and large ice crystals, whereas the Improved Geometric
Optics Method (IGOM) [Yang and Liou, 1996; Bi et al., 2010] is much more time efficient for random-oriented
particles and is more accurate than conventional ray tracing methods. In PGOH, the only approximation made
is that the rays follow the geometric optics scheme. Therefore, the light scattering computation for HOP at
532 nm is performed with PGOH, and we also use the latest version of IGOM to obtain single-scattering prop-
erties of randomly oriented hexagonal plates at 532 nm and column aggregates in the 532 nm and TIR bands.
In addition to the IGOM, a backscattering correction based on Zhou and Yang [2015] for column aggregates
is performed to calculate optical properties in visible wavelengths, providing more realistic backscattering
properties [Ding et al., 2016]. A detailed explanation of the correction is given in the appendix. Using these
single-scattering properties, the bulk optical properties are calculated by assuming a Gamma distribution
with a parameterization provided by Iwabuchi et al. [2012]. The lidar ratio (S) is calculated from the bulk optical
properties as

S = 4&
'P11(&)

. (3)

where ' and P11 are the single scattering albedo and the scattering phase function, respectively.

In TIR forward modeling, we use the TIR radiative transfer simulator originally developed by I16 and adjusted
to the IIR spectral bands. The radiative transfer equation is solved by the two-stream approximation [Nakajima
et al., 2000] in conjunction with the delta-M method [Wiscombe, 1977] by assuming a plane parallel atmo-
sphere. The forward model uses atmosphere and surface properties obtained from the source data described
in the previous subsection. The correlated k distribution (CKD) method with five quadrature points for each
band [Sekiguchi and Nakajima, 2008] is used to compute absorption optical properties associated with clouds
and atmospheric gases (water vapor, carbon dioxide, ozone, nitrous oxide, carbon monoxide, and methane).
Finally, the forward model calculates the band-mean TIR radiance by integration over the CKD quadratures
and converts the BT for each band by Akima interpolation [Akima, 1970] from a precalculated radiance-BT
look-up table (LUT). Systematic biases associated with approximations in the radiative transfer equations are
evaluated through comparison with an accurate radiative transfer model, RSTAR [Nakajima and Tanaka, 1986,
1988], which is based on the matrix-operator method and discrete ordinate method [Chandrasekhar, 1960].
Cubic polynomials with coefficients given by the comparison correct the BT for each band. Plane parallel
homogeneous (PPH) cloud properties are assumed, and cloud boundaries are given from the CALIOP in the
forward model. Note that we do not take into account plate crystals on the bulk optical properties over TIR
wavelengths due to three reasons: (1) Particle texture does not have a significant effect on TIR radiance [Cooper
et al., 2006], (2) the fraction of plates is expected to be small, and (3) ignoring oriented particles dramatically
simplifies the radiative transfer equation. In addition, a column aggregate for TIR simulation is assumed to
have a severely roughened surface ("2

POLY) for simplification. Errors associated with this assumption will be
discussed in the next section.

In lidar backscattering simulations at 532 nm, we use the Monte Carlo radiative transfer simulator [Hu et al.,
2001; Zhou et al., 2012]. The photon propagation direction is determined by the two-dimensional phase func-
tion (scattering zenith and azimuth angle on a scattering plane) that depends on the photon incident angle
given from the LUT of the bulk optical properties. PPH cloud properties are assumed in the forward model.
Sensitivity tests indicate that simulated IAB and DPR are not sensitive to cloud geometrical thickness. Thus
we assume that the cloud geometrical thickness is 2 km and do not use CBH from the CALIOP. The simula-
tor neglects the scattering of molecules and gases because the effects of those types of scattering in a cloud
layer are negligibly small. To guarantee the accuracy of simulations, we set the number of photons to be 108

and calculate the RMSE of simulated IAB and DPR simultaneously. Once we specify IWP, CER, the plate frac-
tion, and the surface roughness, the model provides not only IAB, DPR, and those RMSEs but also COT, the
lidar ratio, and the fraction of HOP. To reduce computational burden in real-time processing, the signals are
precalculated for input values and tabulated in a LUT.
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Figure 1. Sensitivities of (a) TIR bands to COT and CER and (b) lidar signals to the plate fraction and surface roughness.
Horizontal axis shows the brightness temperature (BT) in the 10.6 μm band. Vertical axis shows the BT difference
between 10.6 μm and 12.05 μm. Cloud top (base) height is assumed to be 12 (10) km, and the ice particle model is a
column aggregate shape with severely roughened surface. The lidar signals are simulated by assuming COT = 1 and
CER = 30 μm.

Figure 1 shows sensitivity tests of TIR and lidar signals to the cloud properties. The COT at 532 nm is used
throughout this paper. The lidar off-nadir angle is assumed to be 0.3∘. Figure 1a shows that the IIR BT and
the differences between bands are sensitive to COT and CER in case of COT of 0.2 or more and the signals
are more sensitive to those properties when CER is small. The lidar signals are sensitive to the plate fraction,
as shown in Figure 1b. These signals have relatively small but nonnegligible sensitivity to surface roughness,
especially when clouds contain few plate particles. Clouds with a large plate fraction contain many HOPs, to
which both IAB and DPR are sensitive. The low-surface roughness particles have simpler surface texture and
intensify backscattering, resulting in large IAB and small DPR, but severely roughened particles increase DPR
and decrease IAB.

2.3. Inversion Theory
Optimal estimation [Rodgers, 2000] solves an inversion problem, by estimating a state vector under the con-
straint of prior information in the state vector. The strength of the constraint is given by the standard deviation
of the a priori probability density. Determination of a priori estimates and errors is discussed extensively below
and in section 3. If a state vector element varies over several orders of magnitude, the logarithm of that variable
converges quickly.

The measurement vector is

y =

⎛
⎜
⎜
⎜
⎜
⎜⎝

BT8.65

BT10.6
BT12.0

IAB
DPR

⎞
⎟
⎟
⎟
⎟
⎟⎠

, (4)

and the state vector is

x =

⎛
⎜
⎜
⎜
⎜
⎜⎝

ln IWP
ln reff

Tsfc

ln FPLT

ln "2
POLY

⎞
⎟
⎟
⎟
⎟
⎟⎠

. (5)

The equation to be solved is

y = F(x,b) + e, (6)

where F(x,b) is the simulated measurement,b is a model parameter vector, and e are the simulated measure-
ment and the measurement-model error. The cost function (J) for optimal estimation is

J = [y − F(x,b)]T S−1
e [y − F(x,b)] + [x − xa]T S−1

a [x − xa], (7)
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Table 3. Prior Information in the State Vector

Variable A Priori Sigma Value Minimum Value Maximum Value

ln IWP (kg/m2) ln 0.01 4.6 ! = 0.03 ! = 10.0
ln reff (μm) ln 30 1.0 ln 5 ln 100

Tsfc (K) Tsfc,MODIS 0.7/3.0 for ocean/land Tsfc,MODIS − 3" Tsfc,MODIS + 3"
ln FPLT (%) ln 0.1 4.6 ln 0.001 ln 10.0
ln "2

POLY ln 0.03 4.6 ln 0.001 ln 0.7

where xa is the a priori vector, Sa is the error covariance matrix of xa, and Se is the model-measurement error
covariance matrix. The prior values and the standard deviation of a priori used here are summarized in Table 3.

The prior IWP is set as 0.01 kg/m2 with a weak constraint and a specified maximum/mimimum COT range.
CER is set to a climatological value as a priori with moderate uncertainty. The a priori surface temperature is
variable here and is given by MODIS LST (Tsfc,MODIS) with a strong constraint that assumes RMSEs of 0.7 (3) K
for SST (LST) as used by I16. The surface temperature is important for retrievals in an optically thin cloud. If
MODIS L3 product has bias, the inferred cloud microphysical properties are biased, but taking account of the
uncertainty in the surface temperature can reduce this bias. Since there is little prior knowledge of the plate
fraction and degree of surface roughness, these a priori values are set as 0.1% and 0.03 (moderate surface
roughness), around the middle values of the expected range, and large uncertainty is allowed. To minimize
the cost function, the Levenberg-Marquardt Method is used. A solution with cost function J ≤ 10 is defined
as an optimal solution in this study.

3. Bias and Uncertainty Evaluations

Overall, the quality of retrievals depends on how accurate the model-measurement error is evaluated.
Overestimation of the error loses information content from measurements and leads to systematic biases
of retrievals, and underestimation of the error potentially leads to errors in retrievals. In addition, errors
associated with cloud-atmosphere properties may have significant correlation among measurement sig-
nals. Furthermore, measurement biases caused by gradual degradation of sensors over several years causes
systematic but probably small biases.

I16 uses a novel approach to evaluate cloud-surface-atmosphere uncertainty. In this study, we evaluate uncer-
tainty associated with cloud heterogeneity at the subpixel level in addition to surface properties, atmospheric
profiles, forward modeling, and measurement noise as well as biases. The measurement-model covariance
matrix is represented as

Se = KSFCSe,SFCKT
SFC + Se,ATM + Se,FWD + Se,MEAS + Se,CH, (8)

where Se,SFC and KSFC are the covariance and Jacobian matrices with respect to surface emissivity, and Se,ATM,
Se,FWD, Se,MEAS, and Se,CH are the covariance matrix with respect to atmospheric profiles, forward modeling,
measurement noise, and cloud heterogeneity, respectively. The TIR signals are affected by all error sources,
but the lidar measurements may not be affected by uncertainty in surface emissivity, atmospheric profiles, or
cloud heterogeneity since those properties do not contribute to the lidar signals in the upper troposphere.
Therefore, the variance of the lidar signals and the covariance of the lidar and TIR signals associated with the
three error sources are assumed to be zero.

Surface emissivity for each band has an impact on the retrievals if the cloud is optically thin. The uncertainty in
surface emissivity is quantified by modeling. The forward model calculates the KSFC matrix, whose elements
are SSE/LSE for each TIR band. Newman et al. [2005] estimates the RMSE of uncertainty in SSE to be 0.001
when the viewing zenith angle is less than 60∘. The uncertainty in LSE is evaluated by taking into account
uncertainty in the BFED product, uncertainty in the MODIS day-night algorithm and error propagation though
linear interpolation. The estimated RMSE of LSE is about 0.002–0.025 at the TIR bands.

The uncertainties in atmospheric profiles include uncertainties of temperature and mixing ratios of gases. I16
has evaluated the uncertainty in those properties using MERRA data set. In I16, error vertical profiles of those
properties are simplified by parameterization with eight coefficients. An error covariance matrix obtained
from MODIS measurements over clear-sky pixels is compared with the simulated error covariance matrix
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under clear-sky conditions by specifying the eight coefficients randomly. The best coefficients are obtained by
minimizing the sum of residuals for each element of the matrix. The coefficients reconstruct the global-mean
error vertical profiles of those properties. In this study, the error profiles are used to evaluate the uncertainty
in atmospheric profiles for cloudy cases. As a result, the RMSEs associated with the uncertainty of atmospheric
profiles are 0.6 K at 8.65 μm and 10.6 μm and 1 K at 12.05 μm, and correlation coefficients among the bands
is ∼ 0.9.

Uncertainty in IIR forward modeling is evaluated by comparison with the RSTAR radiative transfer model
[Nakajima and Tanaka, 1986, 1988]. A two-stream approximation may have biases when the scattering con-
tribution is large, and the bias should depend on scattering properties of clouds. Thus, the error covariance
matrix in forward modeling is evaluated by comparison between simulated TIR signals from the two models.
The error variance reaches 0.2 (0.1) K2 at 8.65 μm when the CER is less (greater) than 20 μm, and other ele-
ments including variance and covariance are below 0.03 K2. The uncertainty in the lidar signal simulator is
evaluated by simulating Monte Carlo noise.

In measurement uncertainty, we assume that measurement noise has no correlation among all elements of
the measurement vector. Measurement uncertainty in IIR is caused by measurement signal noise, calibration
biases, and uncertainty. The IIR sensor is composed of a cooled microbolometer, and these uncertainties vary
with observed BT as 0.2, 0.27, and 0.19 K at 8.65, 10.6, and 12.05 (%m) for 210 K, and 0.09, 0.14, and 0.11 for
250 K, according to tests that took place before the launch [Garnier et al., 2012]. The measurement noise is
obtained by linear interpolation from the values when the observed BT is within the range. When the BT is
greater (smaller) than 250 (210) K, we assume the noise to be the same as at 250 (210) K. The CALIOP L2
CLay 1 km product contains estimated uncertainties of IAB and DPR, and this study uses those uncertain-
ties at the measurement noise of CALIOP signals. Measurement biases in IIR signals are corrected based on a
model-measurement comparison over the globe in clear-sky conditions over a week called the “TEST” week
centered at the vernal equinox day in 2007. Since the clear-sky diagnosis in this study is based on the CALIOP
L2 CLay 1 km product, some clear-sky pixels are contaminated by clouds detected with a horizontal average
of 5 to 80 km. According to the CALIOP CLay 5 km product and the forward model calculations, 13.9% of the
clear-sky pixels are contaminated by optically thin clouds with the median COT of 0.019, and these clouds
affect the measurement bias correction by 0.03 K that is significantly smaller than those from other factors.

Evaluation of cloud heterogeneity at the subpixel scale is quite challenging. The uncertainty due to cloud het-
erogeneity is evaluated with several simplifications in uncertainty modeling. Cloud heterogeneity leads to
not only noise-like uncertainty but also biases in observed TIR signals. Fauchez et al. [2014] showed that cloud
heterogeneity, which is well correlated with the variance of subpixel COT, leads to substantial biases of TIR
signals, and uncertainty that has a distribution centered at the bias, with magnitudes depending on COT. This
study treats the uncertainty as a noise distribution assuming a Gaussian distribution but assumes the bias to
be zero because it is difficult to quantify subpixel variability of COT from TIR signals at the pixel level. This is
beyond the scope of the paper and is left for future work. Evaluation of the total uncertainty is performed in
three steps: (1) The probability density function (PDF) of the cost function is obtained from simulated syn-
thetic signals with model-surface-atmosphere noise without Se,CH and various cloud properties that follows
the climatological distribution in the TEST week and is used as the “Benchmark” PDF of the cost function, (2)
Se,CH is parameterized with six coefficients , and (3) we obtain the best combination of the parameters that
exhibits the most similar PDF of the cost function to the Benchmark PDF from measurements over the TEST
week based on the Monte Carlo method. The schematic diagram of this analysis is shown in Figure 2.

The noise-synthetic measurement signals are computed by the forward model calculations for a perturbed
atmosphere-surface state and various cloud properties. The climatological distribution of cloud properties
in the TEST week are obtained from optimal retrievals without considering Se,CH which is a function of COT.
About half of the pixels in this week produce optimal solutions. Random noises of the atmospheric and surface
states obey the error covariance matrices for each state. The Benchmark PDF of the cost function is evaluated
based on the simulations from the synthetic noise and the true uncertainty (Se,w∕oCH = Se − Se,CH). This PDF
idealizes and assumes that the error estimation is perfect, but measurement signals contain uncertainty due to
cloud heterogeneity in addition to Se,w∕oCH. The PDF of the cost function based on the TEST week is compared
with the Benchmark PDF by

(2 = (ΔMean)2 + (ΔStddev)2 + (ΔSkew)2, (9)
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Figure 2. A schematic diagram of the analysis to evaluate an error covariance matrix in cloud heterogeneity.

where ΔMean, ΔStddev and ΔSkew are the average, standard deviation, and skewness difference between
the Benchmark PDF and the PDF from the TEST week. The original PDF of the cost function is substantially
skewed. Therefore, this study uses the logarithm of the cost function (ln J).

Figure 3 illustrates the PDF of the logarithm of the cost function obtained from simulations and observations.

The analysis is limited over the tropics due to computational burden. When the noise in the simulated syn-
thetic measurements increases, the mean logarithm cost function of the retrieval also becomes large due to
underestimation of the error covariance matrix as shown in the noise-enhanced cases (multiplied by a factor
of 2 and 5). With retrievals from observations without Se,CH, the PDF has a broad width and a mean value larger
than the ideal case. Using the best estimate of Se,CH, the retrievals have a mean value comparable to the ideal
case, but the PDF has an unacceptably large width. Several possible sources cause substantial dispersion in
the PDF of the logarithm of the cost function. One source is aerosols with variable optical properties in TIR
radiation. The absorption properties of mineral dust show quite different spectral dependence in comparison
with the counterpart in the case of ice crystals. This potentially affects BT by several kelvin in the split-window
bands [Ackerman, 1997]. Another uncertainty is undetected liquid phase clouds. The CALIOP foot print is much
smaller than the 1×1 km pixel size of IIR measurements. Therefore, IIR measurements are potentially affected
by liquid low clouds even if the CALIOP lidar does not detect it. Those two sources are not considered in the
current simulations but lead to significant biases of TIR BT. Moreover, magnitude of cloud heterogeneity might
significantly vary, and this possibly enlarges the PDF width. Further investigations and rigorous evaluations
in those error sources are needed and are left for future work. The simulations cannot explain these biases,
and therefore, the retrieval cost function is larger. However, the PDF width does not change over simulations
with several noise magnitudes and retrievals with/without Se,CH. This implies that this noise error does not
affect the PDF width very much. The estimated RMSE of signals associated with cloud heterogeneity is about

Figure 3. Probability density function of the logarithm of the
cost function (ln J). CH indicates cloud heterogeneity.

0.5 (2.0) K for each TIR band when COT is 0.1 (1),
which is comparable to results from Fauchez et al.
[2014]. For this reason, this study uses the esti-
mated Se,CH as the uncertainty due to cloud het-
erogeneity at this moment. Note that this error
covariance matrix may contain other uncertain-
ties in cloud properties (e.g., ice crystal habit and
surface roughness), and the TIR simulation does
not consider those variability sources.

4. Results and Discussions
4.1. Retrieval Error Analysis
The performance of the present retrieval algo-
rithm is evaluated with synthetic noise signals
[Iwabuchi et al., 2014]. Synthetic measurement
signals under various atmosphere-cloud condi-
tions are simulated, and 1000 retrieval simula-
tions from the signals are performed for each
combination of cloud property state. Finally, the
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Figure 4. Simulated retrieval performance over ocean in the tropics. The mean bias errors (MBEs) and the root-mean-
square errors (RMSEs) for COT, CER, and the plate fraction for each combination of COT and CER are evaluated. In
addition, the fraction of optimal solutions and the degree of freedom for signal (DOFS) in each COT–CER condition are
shown. The initial value of the plate fraction is 0.05% and surface roughness is 0.5 (severely roughened). The results
assume CTH (cloud top pressure; CTP) of 12 km (213 hPa) and SST of 300 K.

mean bias errors (MBEs) and the RMSEs of the retrievals are evaluated by comparing retrieved cloud prop-
erties with the initial states of the properties. The model atmosphere is assumed to be tropical with a SST of
300 K. The corresponding CTH and CBH are fixed at 12 and 10 km, respectively.

Figure 4 shows the results of retrieval performance tests.

The tests are performed for various combinations of COT and CER from 0.03 to 3 and from 5 to 100 μm with
plate fraction 0.05% and surface roughness 0.5 (severely roughened). The fraction of optimal solutions, the
degrees of freedom for signals (DOFS) and MBEs and RMSEs for COT, CER, and plate fraction are evaluated from
the case that produces an optimal solution (J ≤ 10). Over this range of COT and CER, the retrieval method
obtains optimal solutions in more than 90% of the simulations. The DOFS is greater than 3.5 when COT and
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Figure 5. Two-dimensional histograms of COT and CER based on pixel-by-pixel comparisons between the present results and CALIPSO (left column), MODIS
(middle column), and DARDAR products (right column) in the week from 1 to 7 April 2007.

CER are> 0.3 and>10 μm and reaches 3 even if the COT is around 0.1. The COT MBEs are within±10% over the
prescribed range even where COT< 0.1. The RMSEs of COT retrievals are quite small, below 30% for COT of 0.3
or more and 50% at COT < 0.1. This is because the lidar signals provide information about thin clouds and TIR
signals have substantial information content about thicker clouds. The CER retrievals have estimated MBE and
RMSE of ±20% and < 45% under the conditions with COT > 0.3. For COT less than 0.3, the signals have little
sensitivity to CER, seen in sensitivity tests with the TIR forward model, and consequently, the retrieved CER
becomes close to the a priori. For the plate fraction, the MBE is within ±20% for COT greater than 0.3 and the
RMSE is below 100% for COT and CER > 0.3 and >10 μm, respectively. The RMSE is below 50% for COT greater
than 0.5 and CER greater than 20 μm. Therefore, the tests demonstrate that this retrieval method is suitable for
investigating cirrus clouds. The MBEs of the surface roughness reach ±200% over most of the region except
for clouds with plate fraction less than 0.03% (not shown). This is because the sensitivity of the lidar signals to
surface roughness becomes weak with increasing plate fraction, and the signal sensitivity is barely above the
noise level. When the plate fraction is less than 0.03%, the results show that the MBE and RMSE of the surface
roughness are from −50% to −80% and ∼ 100% with surface roughness greater than 0.1.

4.2. Validation
To confirm the performance of the algorithm, several validation experiments are performed with the CALIOP
L2 CLay 1 km and 5 km products, IIR L2 Track cloud products, MODIS Collection 6 (C6) cloud products [Platnick
et al., 2017], and DARDAR version 2.1.1 cloud products [Delanoë and Hogan, 2010]. The spatial resolution of
CALIOP profiles is adjusted to 1 km. The CALIOP-collocated pixels of those products are selected for the com-
parison. The DARDAR product has vertical profiles of CER, so we calculate the column CER from the profiles
by the following equation.

reff,column = 3
4

∫ ∞
0 Vdz

∫ ∞
0 Adz

(10)

=
∫ ∞

0 IWC (z)dz

∫ ∞
0

IWC (z)
reff(z)

dz
, (11)

where A, V , and IWC are particle projected area, volume, and ice water content, respectively. The comparisons
are performed with both daytime and nighttime retrievals over ocean.
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Figure 6. The lidar ratio comparisons obtained from this study and the DARDAR products (left), CALIOP constrained retrievals (middle), and CALIOP
unconstrained retrievals with the initial lidar ratio of 25 sr (right), respectively.

COT and CER are first compared with these satellite products over a week (1–7 April 2007) on a pixel-by-pixel
basis. Figure 5 shows COT and CER comparisons among those products when COT ranges from 0.05 to 5 and
CER ranges from 0 to 80 μm.

Note that the comparison with MODIS C6 products are limited to daytime observations. COTs from this study
are consistent with those CALIOP products and MODIS C6 products with correlation coefficients of 0.855 and
0.783, respectively. The MODIS C6 product misses pixels when COT is less than 0.3, and the number of pixels
available for comparison is about a quarter of the CALIOP products, which implies that MODIS misses about
half of the cloud over this range. This study underestimates COTs where COT obtained from MODIS or DARDAR
is larger than 5. Possible reasons are that (1) lidar and TIR measurements are less sensitive to such large
COT than shortwave and radar measurements and (2) CALIOP measurements may miss some clouds that are
detected by MODIS and radar due to smaller footprints of CALIOP measurements than those of MODIS and
radar. COTs of DARDAR products are substantially higher compared with this study, especially in optically thin
cloud. Figure 6 compares the lidar ratio (S) among the present results, the DARDAR products and the CALIOP
L2 CLay 5 km product based on the constrained and unconstrained retrieval methods [Young and Vaughan,
2009]. In this study, the lidar ratio is calculated from the bulk optical properties based on the inferred param-
eters. The results demonstrate that the lidar ratios from DARDAR products are about twice as large as those
from this study.

This bias causes the COT bias in DARDAR products. In contrast, the lidar ratios from this study generally agree
with but slightly lower than those from the CALIOP constrained retrievals, showing correlation coefficient of
0.626. It would be desirable to understand how the lidar ratio retrieved from this study is distributed over
the pixels where the initial lidar ratio (25 sr) is used in the CALIOP. For COT inferences over transparent cirrus
clouds, 99.7% of the CALIOP unconstrained retrievals use the initial lidar ratio of 25 sr. The distribution of lidar

Figure 7. Histograms of the HOP fraction retrieved from this
study. Blue and yellow colors are from the pixels corresponding
to ice and oriented ice crystals diagnosed by the CALIOP over
the week from 1 to 7 April 2007.

ratio from this study exhibits a peak at ∼ 25 sr,
but large dispersion ranged from 2 to 65 sr. This
implies that use of a constant lidar ratio as an
initial value over the globe is not a sufficient
approach for COT inference from the CALIOP
measurements with the unconstrained retrieval
method. CER retrievals show low consistency
between this study and other products with cor-
relation coefficients from 0.2 to 0.3, but the mean
values agree well with IIR and DARDAR products.

The HOP fraction is compared with the detec-
tions of oriented ice crystals by the CALIOP over
the week. Figure 7 shows the histograms of HOP
fraction for each CALIOP cloud phase diagnosis.

The HOP fraction is generally higher in the ori-
ented ice crystals pixels than the ice pixels,
and median values of the HOP fraction is 0.024%

SAITO ET AL. ICE CRYSTALS IN CIRRUS CLOUDS 12



Journal of Geophysical Research: Atmospheres 10.1002/2016JD026080

Figure 8. A case study over the west Pacific Ocean ranged from 12∘N–18∘N on 1 April 2007. Intercomparison among
this study, MODIS, CALIPSO and DARDAR products are performed. The upper panel shows the total attenuated
backscatter from the CALIOP level-1b products. The middle and bottom panels show COT and CER for each product.

and 0.0064% over the oriented ice crystals and ice pixels, respectively. Therefore, the HOP fractions from this
study essentially agree with detections of oriented ice crystals by the CALIOP. A part of both histograms is
overlapped around the HOP fraction of∼ 0.01%. This could be principally caused by the algorithm differences
between the present method and CALIOP feature classification [Hu et al., 2009]. This study considers CER and
the degree of surface roughness for lidar signal calculations but does not take into account spatial coherence
in lidar signals, unlike in the CALIOP feature classification.

Next, these products are compared in the West Pacific tropics from 12∘N to 18∘N in latitude and at longitude
168∘E as a case study. Figure 8 shows vertical profiles of the total attenuated backscatter from CALIOP level
1b products and the pixel-by-pixel comparison of COT and CER over the granule.

Optically very thin cirrus cloud is spread over the range of 17∘N–18∘N and is gradually becoming optically
thick toward the south, but the cirrus clouds are transparent. Note that there are possible multilayer clouds
(such as at latitudes 16∘N–16.5∘N), but the retrieval analysis is performed as a single-layer cloud based on
the criteria described above. The COT retrievals of this study are consistent with CALIOP cloud products when
COT is 1.0 or less and are close to MODIS C6 products when the COT is thicker. A systematic bias in the COT
comparison between this study and DARDAR cloud products is found over clouds with COT < 1. The CER
retrievals of this study generally agree with IIR products but do not exhibit the large dispersion shown by IIR
CERs over the region. Comparisons with the MODIS C6 product do not show good agreement for a cloud with
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Figure 9. Global analysis for April 2007 focusing on the plate fraction and HOP fraction. Right and left columns show the
middle-cloud temperature and latitudinal variation of those properties, respectively. The solid line with circle symbols
indicates the median value and the dashed lines show the 2.5 to 97.5% range.

COT greater than 1.0, showing an average CER ∼ 20 μm from MODIS and 30–40 μm from this study. This is
partly because cloud vertical heterogeneity provides different impacts on CER retrievals between MODIS and
this study in moderately optically thick clouds [Zhang et al., 2010]. The CER from DARDAR product shows low
variability with an average of 25 μm over the region.

Based on the above, the present method is suitable for investigation of cirrus clouds and is applicable for
clouds with a wide COT range from 0.03 to 3, over which accuracy of retrievals is acceptable.

4.3. Global Statistics of Plate Particles
Using data from April 2007, in which the CALIOP off-nadir angle is 0.3∘, this algorithm focuses on ice particle
morphology. In this study, cirrus clouds are defined by COT less than 3, cloud top temperature (CTT) less than
−40∘C, and geometrical thickness less than 3 km, according to criteria and findings in Sassen et al. [2008]. First,
the algorithm is processed for the pixels that satisfy the requirements shown in Table 2. Second, we choose
pixels that satisfy the criteria for cirrus clouds as shown above. Finally, to guarantee the accuracy of cloud
property retrievals, pixels with optimal solutions, CER of 5–80 μm and DOFS greater than 3 are selected. As a
result, 90% of cirrus pixels (N = 341162) are used in the following analysis.

Figure 9 shows latitudinal and temperature variations of the plate fraction and HOP fraction in cirrus clouds.

The median COT is 0.2 in the tropics (30∘S–30∘N), 0.3 in midlatitudes (30∘S–60∘S and 30∘N–60∘N), and 0.5 in
high latitudes (> 60∘S and > 60∘N). Generally, the distributions of those properties exhibit large variabilities
of 2 orders of magnitude. The plate fraction shows latitudinal variation with a median of 0.06% in the tropics
and 0.1% at higher latitudes. The middle-cloud temperature (MCT) is defined as the average temperature of
the cloud top and base in this study. The distribution of the plate fraction exhibits significant dependence on
the MCT, with median 0.04% at MCT of −80∘C and 0.1% at MCT of −40∘C. The HOP fraction shows the same
tendency of variation in latitude and MCT, but the fraction is generally one-tenth of the plate fraction. Since
CERs range from 15 to 50 μm with a median of 32 μm in this analysis, generally, cirrus clouds consist of small
particles and do not contain many large particles (>100 μm) where HOPs can exist. In consequence, the HOP
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Figure 10. Distributions of the lidar ratio with respect to the cloud top temperature (CTT), the middle-cloud
temperature, cloud effective radius (CER), and latitude. The solid line with circle symbols indicates the median value
and the dashed line show the 2.5 to 97.5% range.

fraction is ∼ 0.01%, which is significantly smaller than measured by previous studies [Noel and Chepfer, 2004,
2010]. Several papers have reported that surface texture of ice crystals may not be perfectly smooth [Magee
et al., 2014], although a smooth surface is assumed in the hexagonal plates in this study due to limitation of
PGOH computation. HOPs with a roughened surface may provide weaker backscattering intensity and higher
depolarization ratio than those with a smooth surface, and therefore, this study could underestimate the plate
and HOP fraction if clouds contain roughened plate particles.

Figure 10 shows distributions of the lidar ratio variation in cirrus clouds.

Those distributions exhibit large variability as well. The median lidar ratio of cirrus cloud over the globe is
about 27–31 sr, which generally agrees with Seifert et al. [2007] with a mean lidar ratio of 29–33 sr over the
Indian Ocean and with Josset et al. [2012] with a lidar ratio of 33 ± 5 sr over the global ocean. In addition,
slight latitudinal variations with higher values in the tropics and lower value in high latitude are seen. With
increasing CERs, the lidar ratio decreases due to increase of HOPs. A distribution of the lidar ratio with respect
to CTT exhibits weak dependence on temperature where the CTT is less than −40∘C but takes a slightly lower
value in colder temperatures (< −60∘C) and shows larger dispersion over warmer CTTs. Similar results for cold
cirrus clouds are also found in Garnier et al. [2015], implying that less complex ice crystals are dominant at
colder temperature. The slight temperature dependence of lidar ratio could also be explained with the degree
of surface roughness of ice crystals that will be discussed in section 4.4. The lidar ratio sharply decreases where
MCT is higher than −40∘C when the HOP fraction reaches 0.01%. The temperature of −40∘C is a critical point
in terms of the lidar ratio, since a HOP fraction greater than 0.01% has substantial effect on the IAB.

Lidar measurements detect geometrically thick transparent ice clouds that satisfy the same criteria as cirrus
clouds (COT less than 3 and CTT less than −40∘C) but with cloud geometric thickness greater than 3 km. After
quality control filtering, the number of cases reaches N = 141, 299. Figure 11 shows the distribution of the
HOP fraction and the lidar ratios for transparent thick clouds.
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Figure 11. The distribution of the HOP fraction (top row) and lidar ratio (bottom row) for transparent ice clouds with
CTT of −40∘C, COT of 3 or less but cloud geometric thickness larger than 3 km. Left and right columns show the
latitudinal variation and middle-cloud temperature dependence of those properties, respectively. The solid line with
circle symbols indicates the median value and the dashed lines show the 2.5 to 97.5% range.

The median COT is 1 in the tropics and 2 in high latitudes, which is optically thicker than for cirrus clouds
with geometric thickness less than 3 km, as shown by Sassen and Comstock [2001]. The median HOP fraction
is 0.003%, 0.009%, and 0.04% at MCTs of −70∘C, −50∘C, and −30∘C, respectively. As several previous stud-
ies indicate [e.g., Noel and Chepfer, 2010], the temperature where HOPs are frequently present is greater than
−30∘C, and therefore, the lidar distributions exhibit substantial latitudinal variation. Figure 12 shows the COT
comparison between this study and the CALIOP. The results exhibit high correlation coefficients in the tropics
(0.909) and extratropics (0.903) in case of comparison with the CALIOP constrained retrievals. The compari-
son with the CALIOP unconstrained retrievals also shows good agreement in the tropics with a correlation
coefficient of 0.761 because the median lidar ratio in the tropics is close to 25 sr with relatively small disper-
sion. However, the ratio in the extratropics (latitude greater than 30∘) provides a negative bias, where COT
is greater than 1 and a relatively low correlation coefficient of 0.614. This is because the lidar ratio over the
extratropics has large dispersion, and the median value is lower than 20 sr, which is far from the initial value
used in the CALIOP products. The results suggest that more precise initial lidar ratio, which may be a simple
temperature-based parameterization of the lidar ratio, could significantly improve CALIOP COT retrievals with
the unconstrained retrieval method.

4.4. Discussions of Ice Particle Morphology
This study shows quantitative distributions of the fraction of plates and HOPs. However, several assumptions
have impacts on quantitative retrievals. The assumption of the tilting angle of HOP is critical since a small
tilting angle (< 1∘) dramatically intensifies the backscattering. There is a general consensus that the tilting
angle of HOP is usually less than a few degrees [Sassen, 1991; Sassen and Benson, 2001; Reichardt et al., 2002].
This study investigates the impacts of the tilting angle assumption on the retrievals.

Figure 13 shows histograms of the plate fraction and lidar ratio inferred from this study by assuming a mean
tilting angle of 0.8∘, 0.9∘, and 1∘, respectively.
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Figure 12. Pixel-by-pixel comparison of COT from this study with the CALIOP constrained retrievals (top row) and
unconstrained retrievals (bottom row) for transparent ice clouds with CTT of −40∘C, COT of 3 or less but cloud
geometric thickness larger than 3 km. Left and right columns exhibit the comparison with the CALIOP products over
the tropics and extratropics.

The plate fraction shifts to a larger value when the average tilting angle increases. However, general feature
assumptions of the plate fraction such as latitudinal variation and temperature dependence are not changed
when solving for the plate fraction and lidar ratio. Note that the probability density of the lidar ratio is almost
identical over the tested tilting angles and the distribution exhibits the same characteristics as shown in
Figure 10. Other retrievals such as COT, CER, and the degree of surface roughness are not affected much as well,
and those averages vary less than 1% among the three cases. The average value of the plate fraction varies
within a factor of 3, but that is smaller than the magnitude of variability of the plate fraction with respect to

Figure 13. The histogram of the plate fraction and lidar ratio in cirrus clouds for each assumed tilting angle PDF.
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Figure 14. The histogram of the retrieved surface roughness and lidar ratio in cirrus clouds with a plate fraction less
than 0.03%.

temperature. Thus, the latitudinal variation and temperature dependence of the plate fraction as well as the
lidar ratio are robust features, even if the quantitative value of the plate fraction is uncertain in some cases.

The other assumption is the use of the column aggregate particle model for complex ice particle morpholo-
gies. In fact, cirrus clouds consist of a variety of ice particle shapes with significant temperature dependence. In
a cloud temperature less than−50∘C, the cirrus cloud consists mostly of small droxtals (also known as compact
facets) [Heymsfield and Iaquinta, 2000; Lawson et al., 2006]. Plate aggregate particles (bullet rosette particles)
generally increase where temperature is less (greater) than −40∘C [Bailey and Hallett, 2009]. Iwabuchi et al.
[2012] investigated backscattering properties of various ice particle shapes to aim for better understanding
of particle texture in contrails. The optical properties of different ice crystals such as droxtals, hollow columns,
bullet rosettes, and column aggregates vary within a range of 0.1 for the depolarization ratio but by a factor of
3 or more for the lidar ratio when each particle has a smooth surface. Variability due to different particle shapes
is almost the same magnitude as variability with changes in the surface roughness, as shown in Figure 1c, but
may not have significant impacts on the retrievals of the plate fraction in terms of a sensitivity magnitude.

Retrieval of the degree of surface roughness is also investigated under very limited cloud conditions. We chose
cirrus clouds with a plate fraction less than 0.03%, and 18.05% of the cirrus pixels (N = 61576) are analyzed.

Figure 14 shows temperature dependence of the degree of surface roughness and the lidar ratio in this
study. As discussed above, the inferred surface roughness may represent not only the surface roughness itself
but also complexity of the crystal shape. The distribution is bimodal with peaks at both limits of the pre-
scribed range, implying that the prescribed range may not be large enough. A majority of pixels indicates
that aggregates have smooth surface roughness that is not consistent with previous studies [van Diedenhoven
et al., 2014; Hioki et al., 2016]. One of the possible reasons is that the column aggregate model may not
be suitable for cirrus clouds, which is discussed above. The other possible reason is that the backscattering
intensity at a scattering angle of ∼ 180∘ is underestimated with current computing techniques, even includ-
ing the backscattering correction. Further constraints of the ice particle shape model and improvements of
computational techniques for light scattering properties are needed. The distribution of the degree of sur-
face roughness exhibits a slight dependence on temperature, indicating that more roughened particles are
present where the MCT is warmer. In the three bins discriminated by the MCT, the average CER values are
34.1 μm, 38.2 μm, and 41.8 μm for MCT ranged from −90∘C to −70∘C, −70∘C to −50∘C, and −50∘C to −30∘C,
respectively. The lidar ratio distribution differs among those bins, resulting mainly from variation in CERs for a
small lidar ratio and variation of roughened particles ("2

POLY > 0.1) for a large lidar ratio. A small peak at the lidar
ratio of ∼ 60 sr corresponds to the presence of severely roughened particles. An absence of lidar ratios less
than 25 sr is mainly caused by ice particles in clouds where HOPs are not present. Such clouds have significant
variability in the backscattering intensity, causing large dispersion of the lidar ratio. Significant temperature
dependence of ice particle morphology is shown in this study, but results still exhibit a large dispersion.
Another important factor for ice particle morphology is ice supersaturation [Bailey and Hallett, 2004], which
may contribute to the dispersion.
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5. Conclusions and Future Prospects

We have developed an optimal estimation-based algorithm to infer ice particle morphology and microphysi-
cal properties in cirrus clouds from measurements of thermal infrared radiances and lidar backscatter signals
on the CALIPSO platform. The bulk optical properties take into account the HOPs and the column aggregates
with various degree of surface roughness. Retrieval performance tests show that the method can infer not
only COT and CER but also the plate fraction without significant biases and demonstrate that this technique is
suitable for investigation of COT (CER and the plate fraction) in cirrus clouds with a lower COT limit of 0.03 (0.3).
Validation tests with other satellite-derived products show that COT retrievals are consistent with CALIOP and
MODIS products. Inconsistency in COT compared with DARDAR products results from a discrepancy in the
lidar ratio, which is retrieved simultaneously from both products: The ratio from DARDAR products is about
twice as high as the one from this study. Comparisons of CERs show large discrepancies and low correlation
coefficients among the products. An analysis of 1 month of data shows distributions of the fraction of plate
particles and HOPs (April 2007). Those properties have substantial dependence on temperature, resulting in
their latitudinal variations. The HOP fraction is about 0.003% at a middle-cloud temperature of −80∘C and
0.01% at MCT of−40∘C. Those quantities may be uncertain due to uncertainty in the average tilting angle, but
the temperature dependence of plates and HOP is robust. The lidar ratio theoretically calculated from inferred
optical properties in cirrus is 27–31 sr, which is consistent with previous studies, and the value is smaller at
high latitudes, compared to the tropical counterpart. Cirrus clouds with a geometrically thick structure exhibit
large variability in the lidar ratio over the extratropics, resulting in relatively worse correlation coefficients
based on comparisons of COT with CALIOP products.

Use of measurements from multiple satellite instruments gives more precise retrievals, since the retrievals can
explain those multiple signals. As shown by comparison between this study and other products, the same
retrievals from different instruments frequently show discrepancies. Ultimately, the most precise retrievals
explain all measurements. This study has the potential to improve the accuracy of retrievals and take into
account more parameters for inferences by adding other measurement signals such as cloud reflectivity at
visible and near-infrared wavelengths, radar reflectivity over clouds, and multiangle polarized cloud reflectiv-
ity. Additional data substantially increase the information content of cloud properties, including ice particle
morphology, and gives us more precise understanding of cirrus cloud properties as well as cirrus cloud
radiative effects.

This study demonstrates the statistics of ice particle morphology based on 1 month of global satellite data.
The CALIPSO satellite has provided TIR and the lidar signals since it was launched in 2006, and more than
10 years of data are available. In addition, the Earth Clouds, Aerosol and Radiation Explorer (EarthCARE) satel-
lite will be launched in 2018, and it has similar instruments compared to CALIPSO [Illingworth et al., 2015].
The method in this study is applicable to future measurement signals from the EarthCARE satellite. Therefore,
investigation of ice particle morphology in cirrus clouds over a multidecadal period shall be possible.

Appendix A: Backscattering Correction

The conventional geometric optics method is not capable of providing the accurate phase function values in
backscattering directions since the method does not take interference into account, thereby underestimating
backscattering. Zhou and Yang [2015] provided a method to correct the phase function over scattering angles
of 175–180∘ for hexagonal column particles. The method uses the sinc function to represent a pattern of inter-
ference fringes that presumably happen due to the coherent phase interference of scattered field in the case
of a simple particle morphology. However, a particle with a complex texture does not give rise to the same
pattern according to a rigorously calculated phase function using the invariant-imbedding T matrix (II-TM)
method [Bi et al., 2013, 2014]. In this study, a backscattering correction at scattering angles near 180∘ is pro-
vided for the column aggregate shape particle based on the method from Zhou and Yang [2015] adjusted for
complex particles. The amplification factor is described as )($) = P11,II−TM($)

P11,flat($)
, where P11,II−TM($) and P11,flat($) are

the P11 values calculated from the II-TM and linear extrapolation from the scattering angle range of 150–175∘.
P11 in the scattering angle range of 175–180∘ is multiplied by ). For a continuous phase function at the angle
of 175∘, the correction factor ) that should be multiplied by P11 is defined by

)($) = F($) − F(175∘), (A1)
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Figure A1. Scattering phase function (P11) values of the column aggregate particle model obtained from the II-TM
calculation (symbols) and the combined IGOM and a backscattering correction (lines) for specified combinations of size
parameter and surface roughness.

where function F($) is the Cauchy distribution described as

F($) = C1

C2
2

(& − &$
180

)2 + C2
2

. (A2)

Coefficients, C1 and C2 represent height and width of the backscattering peak. Based on a rigorous calculation
with II-TM, C1 is almost constant over the size parameter &D

*
but takes a lower value for severely roughened par-

ticles compared to smooth particles, and C2 does not depend on the surface roughness and is parameterized
well for various size parameters as

C2 = D1 + D2(
&D
*

)−D3 , (A3)

where D1, D2, and D3 are coefficients that take positive values. Therefore, we determine those coefficients with
least squares fitting to calculated phase functions using II-TM over the size parameter range of 40–130 μm
and surface roughness range of 0.001–0.7.

Figure A1 shows amplification factors calculated from the II-TM (the exact values) and from the combined
IGOM and backscattering correction.

The IGOM with the backscattering corrections constructs the backscattering peak of P11 over the scattering
angle accurately.
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