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Abstract Earth System modeling has become more complex, and its evaluation using satellite data has
also become more difficult due to model and data diversity. Therefore, the fundamental methodology of
using satellite direct measurements with instrumental simulators should be addressed especially for
modeling community members lacking a solid background of radiative transfer and scattering theory.
This manuscript introduces principles of multisatellite, multisensor radiance-based evaluation methods
for a fully coupled regional Earth System model: NASA-Unified Weather Research and Forecasting
(NU-WRF) model. We use a NU-WRF case study simulation over West Africa as an example of evaluating
aerosol-cloud-precipitation-land processes with various satellite observations. NU-WRF-simulated
geophysical parameters are converted to the satellite-observable raw radiance and backscatter under
nearly consistent physics assumptions via the multisensor satellite simulator, the Goddard Satellite Data
Simulator Unit. We present varied examples of simple yet robust methods that characterize forecast errors
and model physics biases through the spatial and statistical interpretation of various satellite raw signals:
infrared brightness temperature (Tb) for surface skin temperature and cloud top temperature, microwave
Tb for precipitation ice and surface flooding, and radar and lidar backscatter for aerosol-cloud profiling
simultaneously. Because raw satellite signals integrate many sources of geophysical information, we
demonstrate user-defined thresholds and a simple statistical process to facilitate evaluations, including the
infrared-microwave-based cloud types and lidar/radar-based profile classifications.

1. Introduction

A mesoscale meteorological model is a practical tool to conduct regional weather and air pollution forecasts
and to study important mesoscale weather phenomena, such as hurricanes, squall lines, thunderstorms,
and various types of tropical convection interacting with land and ocean processes [Pielke, 2013]. Due to
recent increases of computational power, more comprehensive mesoscale models have been developed
capable of simulating cloud-precipitation, aerosols, and land surface processes down to the storm-resolving
scale (1–5 km horizontal grid spacing) [Cotton et al., 2003]. The largest advantage of this fine-resolution
modeling is that atmospheric convective processes are realistically depicted by the dynamical core instead of
using a cumulus convection scheme [Tao and Moncrieff, 2009; Weisman et al., 1997]. Since scales of these
simulated mesoscale phenomena are also comparable to modern Earth-observing satellite measurements,
various physical processes can be conceivably evaluated against various modern satellite observations,
linking to various aspects of clouds, precipitation, aerosols, and land surface characteristics [Parkinson, 2003;
Simpson et al., 1996; Schoeberl et al., 2006].

However, multisatellite and multiinstrumental measurements have also revealed uncertainties among
different satellite products. For example, different visible infrared (IR) sensors, microwave sensors, lidar, and
cloud radar can retrieve cloud ice-water contents, which can be substantially different from each other due to
different retrieval methods and/or different satellite instrument platforms [Roebeling et al., 2013;Waliser et al.,
2009]. In a specific rainfall regime, precipitation estimates from satellite precipitation radar, cloud profiling
radar, and passive microwave sensors can have large discrepancies [Berg et al., 2008]. Depending on the
choice of the near-infrared channels, estimation of cloud top effective radius yields different results due to
different sensitivities to the presence of drizzle droplets near the cloud top [Chang and Li, 2003; Nakajima
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et al., 2010]. Even using the same sensor channels, the variety of retrieval methods and their physical
assumptions result in different aerosol optical depths [Myhre et al., 2004].

Satellite retrievals always face a fundamental problem: the number of uncertainties that characterize satellite-
observable electromagnetic signals exceeds the number of satellite-received signals. This requires
satellite retrievals to make unique assumptions to estimate the geophysical parameters from space. While
retrieved geophysical parameters are useful to quantify geophysical parameters (often called Level 2 and Level
3 data sets), it often frustrates evaluating atmospheric models in detail due to different physical assumptions
between various satellite retrievals and Earth System models [Eliasson et al., 2011; Waliser et al., 2009].

One of the alternative approaches is to use direct satellite measurements, i.e., calibrated radiance and/or
backscatter (often called Level 1 data), for model evaluation. In this approach, a satellite simulator (or a
forward model) must be utilized to translate model geophysical parameters into the satellite-observable
radiance or backscatters [e.g., Chaboureau et al., 2000; Masunaga et al., 2008; Matsui et al., 2009]. As long as
calibration and uncertainties of the satellite sensor are well known, the satellite level 1 data are the
most direct observation with neither physical assumptions nor retrieval procedures. If satellite-observable
signals are simulated from the model physics assumptions, the radiance-based evaluation possibly allows
more apple-to-apple comparison against satellite measurements. Multiple satellite measurements could
reveal various aspects of the model strengths and weaknesses.

For example, Han et al. [2013] used satellite microwave brightness temperature (Tb) and ground-based
Doppler radar signals for evaluating different bulk microphysics schemes in the Weather Research and
Forecasting (WRF) model. Hashino et al. [2013] used satellite radar and lidar signals to evaluate cloud
microphysics simulation from a global storm-resolving model. Li et al. [2010] used satellite and ground-based
precipitation radars and microwave Tb to constrain precipitation microphysics from squall line simulation.
Matsui et al. [2009] combined satellite-derived infrared Tb, precipitation radar, and microwave Tb to establish
a comprehensive evaluation framework for the long-term cloud-resolving model simulations. Similar
approaches have been further applied to cloud-precipitation data assimilation framework in regional models
[Vukicevic et al., 2006; Polkinghorne and Vukicevic, 2011; Zupanski et al., 2011a; Zhang et al., 2013].

Passive microwave and IR Tb have been widely utilized to assess forecasting and model physics in the French
mesoscale meteorology research group. Chaboureau et al. [2000] utilized Meteosat Tb from IR and water
vapor channels to evaluate forecast skill of the Meso-Nonhydrostatic (Meso-NH) model with a forward
model. Their study is one of the pioneering studies that applied “model-to-satellite” approach to a mesoscale
model with explicit microphysics scheme. Chaboureau et al. [2002] examined a possibility of adjusting model
microphysics parameters toward observed radiance through model-to-satellite approach. Wiedner et al.
[2004] applied passive microwave Tb and a microwave simulator to evaluate simulated deep convection,
and Meirold-Mautner et al. [2007] examined sensitivity of ice single-scattering properties to simulated
microwave Tb. Söhne et al. [2006, 2008] applied objective analysis method to the model-to-satellite approach
for evaluating cloud cover, and the same technique was applied to evaluate ensemble forecasting skill
[Chaboureau et al., 2012]. Chaboureau and Pinty [2006] utilized two-channel IR Tb techniques to validate cirrus
parameterization in the Meso-NH model, and Chaboureau et al. [2007] applied the same technique to
examine diurnal cycle of cirrus clouds and mineral dust.

This radiance-based evaluation method, however, requires an understanding of the satellite measurements
and the underlying physics principles of electromagnetic scattering theory, radiative transfer, and satellite-
sensor measurement patterns. Yet there is still a large knowledge gap between the satellite and themodeling
communities on these critical topics. Therefore, an introductory but wide-ranging discussion of satellite
radiance-based evaluation methods should be addressed especially for regional Earth System modeling
community members without solid background of forward modeling and satellite remote sensing.

The major objective of this paper is to introduce unique multisensor radiance-based evaluation methods and
principles of regional Earth System models using satellite simulators with a series of examples in simple
spatial and statistical analysis. To date, the potential of combining mesoscale model output and multisensor
satellite radiance data has been yet largely unrealized. Therefore, section 2 first discusses key principles,
philosophy, and advantage/disadvantage of radiance-based evaluation method. Section 3 briefly describes a
regional model and a multiinstrument satellite simulator used in this manuscript. A series of examples and
interpretation of the satellite measurements are shown in section 4, including discussion of relationship
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between geophysical parameters and various satellite signals with emphasis on aerosol-cloud-precipitation-
land processes. Section 5 summarizes results and makes conclusion.

While our emphasis is to present simple examples so that diverse modeling communities can readily
understand the concept and the utility, we would like to point out that this manuscript does not (i) provide a
detailed description of physics and mathematics principles in radiative transfer or scattering theories,
which are more completely described in the available textbooks [Stephens, 1994; Liou, 2002; Petty, 2006;
Bohren and Huffman, 1998]; (ii) provide comprehensive evaluation results using ensemble simulations or
various cases studies over different seasons and/or climate regimes; and (iii) achieve specific improvements
of model physics or modules in comparison with observations, as such efforts are covered in other papers,
e.g., for cloud microphysics [e.g., Chaboureau et al., 2002; Iguchi et al., 2012; Li et al., 2010; Lang et al.,
2011], for land surface [e.g.,Matsui et al., 2007], and for aerosols [e.g., Petrenko et al., 2012; Cheng et al., 2008]
to note a few.

2. Principles and Philosophy of Radiance-Based Model Evaluation

First of all, key advantages, recommendations, limitations, and uncertainties of radiance-based evaluations
are discussed. These principles are basics but very important for those who utilize multisensor satellite
simulators for their mesoscale modeling studies.

The most significant advantages of the satellite radiance-based evaluation include

1. Radiance-based evaluations avoid retrieval assumptions and uncertainties inherent in satellite-retrieved products,
and thereby provide apple-to-apple comparisons between models and observations. Satellite-observed and
well-calibrated radiance or backscattering data are the most direct observations without any problem of
inverse model in retrievals.

2. Radiance-based approaches could allow evaluating detailed aspects of model assumptions or simulations,
such as cloud and aerosol microphysics and land surface characteristics by carefully analyzing simulated
radiance fields. This is because one can use model’s physics assumption within a forward model to
diagnose sensitivity of simulated radiance to the observed radiance.

3. Modelers can also investigate impact of forwardmodel uncertainties,which inherently exist in the satellite retrieval
algorithm. Often, there are larger uncertainties in calculating land surface emissivity or single-scattering
assumptions at a particular wavelength or frequency, which often biases satellite-derived products. With
satellite simulator, one can examine such uncertainties through diagnosing simulated radiance.

While radiance-based evaluation has large potential and various advantages in the situations discussed
above, disadvantages and limitations must be also addressed here:

1. Radiance-based evaluation requires substantial background knowledge to interpret radiation and backscatter
fields. As explained in later sections, interpretation of satellite-raw radiance fields requires basic and/or
advanced knowledge of satellite instruments, radiative transfer, and single-scattering theory. While
this manuscript address several basics, we encourage the modeling community to learn more funda-
mentals from available textbooks [Liou, 2002; Petty, 2006; Bohren and Huffman, 1998; Ulaby et al., 1981;
Stephens, 1994]. Various journal publications, including this manuscript, of satellite remote sensing are
also a good source to learn key channels, sensors, and techniques relating to geophysical parameters.

2. Radiance interpretation often varies in different seasons and over different climate regimes. This is especially
true for passive instruments, e.g., visible IR and microwave radiometers as background atmosphere-land
surface properties changes. E.g., separation of cloud and land surface IR Tb is relatively easy over
tropics but would be difficult over high-latitude regions. Low-frequency microwave Tb drastically changes
between land and ocean surface. Alternatively, satellite-retrieved products reasonably take account
background variability of radiance in the algorithms.

3. Visible radiance fields are also affected by satellite sensor scanning and solar angles. For a given atmospheric
column, satellite sensor viewing angle, solar zenith angle, and solar-view cone angles provide variability
of simulated and observed radiances. This could frustrate the application of simple radiance-based
evaluation methods to visible imager observations, and examples are not shown in this introductory
manuscript. However, it is possible to utilize such channels to evaluate clouds or aerosol fields [e.g.,
Weaver et al., 2007], as long as additional parameters (e.g., sensor-solar angles and surface reflectance) are
properly treated in the evaluation methods.
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4. Radiance fields are affected by multiple geophysical parameters. Thus, it often creates confusion for evaluat-
ing a specific geophysical parameter. However, this can be advantageous for evaluating Earth System
modeling, since radiance-based evaluation allows more complete assessment related to multiple
geophysical parameters. For example, cloud fraction and types (altitude) and surface skin temperature
must be reasonably simulated by a mesoscale model in order to accurately simulate IR Tb of window
channels. In order to simulate accurate lidar backscattering, a mesoscale model must accurately simulate
aerosols and clouds profiles.

5. Single radiance/backscatter information often results in nonsingularity issue in interpretingmodel-observation
differences related to a specific geophysical parameter. For example, a combination of low clouds and
thin cirrus create similar IR Tb to midlayer clouds [e.g., Chang and Li, 2005]. This limitation also applies to
single-channel satellite retrievals, too. Well-designed multichannel multisensor evaluation approach
could overcome this issue.

For given advantages and disadvantages, readers may consider using direct radiance/backscatter data in lieu
of satellite-derived products (a) when a satellite product presents large variability among different retrieval
techniques, or across different satellite platforms; (b) when physical assumptions in satellite retrievals are
critically different from model assumptions; or (c) when a modeler aims to evaluate a very detailed level of
model physics evaluation, beyond retrieval uncertainty level. In these cases, we also provide the following
recommendations to derive maximum benefit from the radiance-based evaluation approach:

1. Quality of the forward model in a satellite simulator should be close to those used for satellite remote
sensing retrievals.

2. Physical assumptions and model diagnostic and prognostic parameters must be treated as consistently
as possible in a forward model.

3. Diverse signal data from satellite instruments and channels should be used simultaneously for more
comprehensive evaluations across coupled model components while avoiding nonsingularity issue.

Having addressed these advantages/disadvantages and recommendation, various multisensor radiance-
based model evaluation approaches are reviewed with the specific examples in the following sections.

3. Modeling Systems

This study uses the NASA-UnifiedWeather Research and Forecasting (NU-WRF) model (https://modelingguru.
nasa.gov/community/atmospheric/nuwrf). The objective of the NU-WRF is to develop a regional Earth
System modeling and assimilation system on the satellite resolvable scale. NU-WRF has been developed at
NASA and is based upon the WRF-Advanced Research WRF (ARW) model [Skamarock et al., 2008] and WRF-
Chem [Grell et al., 2005]. The NU-WRF has the wider capabilities of Goddard physics packages (aerosols, cloud,
and radiation interactions), land surface modeling and assimilation (NASA Land Information System) [Peters-
Lidard et al., 2007], and a satellite simulator over the WRF-ARW.

This manuscript utilizes the NU-WRF simulation from Shi et al. [2013] that features a specific Mesoscale
Convective System (MCS) interacting with land and aerosols (mineral dust) processes over West Africa
coincide with the African Monsoon Multidisciplinary Analyses (AMMA) experiments. As a demonstration of
the radiance-based evaluation method, we primarily focus on the simulation results at 01 Z 6 August 2006,
because of the maturity of the simulated MCS surrounded by mineral dust and the coinciding of these
features with various satellite observations. This particular NU-WRF simulation uses three nested domains
(two inner nests) with two-way nesting (i.e., the outer domain provides lateral boundary conditions for the
inner domain, and results from an inner domain are averaged over the outer domain). Horizontal grid
spacings of the middle and the inner domains are 6 km and 2 km, respectively, to resolve mesoscale
dynamics associated with fine-scale aerosol-cloud-precipitation-land interactions [Shi et al., 2013]. This
manuscript focuses on evaluating the middle domain using the satellite data, which has fairly large-scale
areal coverage close to the swath widths of satellite passive sensors.

The G-SDSU is an end-to-end multisatellite and multiinstrument simulator and is designed to support
meso-γ-scale atmospheric models [Matsui et al., 2013]. It has been developed upon the Hydrospheric
Atmospheric Research Center (HyARC) SDSU through the collaborations of the various universities and
institutions [Masunaga et al., 2010]. The G-SDSU includes satellite orbit-scanning geolocation calculations,
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generalized single-scattering databases/calculations, and various radiative transfer models (RTMs) that can be
applied to most of the existing satellite sensors. Most of the RTMs have been previously applied to construct
various remote sensing algorithms [Nakajima et al., 1991; Higurashi and Nakajima, 1999; Dubovik and King,
2000; Kummerow et al., 2001;Masunaga and Kummerow, 2006; Olson et al., 2006]. The particle size distributions
(PSD) of hydrometeors and aerosols are treated with the model (NU-WRF) microphysics assumptions and are
nearly identical in various simulator components. All simulators are one-dimensional RTMs that assume a plane-
parallel atmosphere. While visible IR simulator assumes column simulation, the microwave and the radar
simulators are configured for slant-path (pseudo 3-D) radiative transfer [Olson et al., 2006]. The simulated
radiances or backscattering signals are convolved in the antenna gain patterns of the instruments through
satellite orbit and scanning simulators [Matsui, 2013]. More details are described in Appendix A.

4. Satellite Observations and Examples of Simulated L1 Data From NU-WRF
4.1. Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) Infrared Brightness Temperature

Among satellite raw data, the IR window region (8μm to 14μm) is the most familiar “raw radiance” data
widely used in the meteorological community. IR Tb emitted from the Earth’s surface or from a cloud are used
to estimate cloud top temperature [Inoue, 1987; Rossow and Lacis, 1990; King et al., 1992;Menzel et al., 2008] or
land surface skin temperature [Price, 1984; Wan and Dozier, 1996; Mao et al., 2005] and for evaluation
and assimilation of clouds [Chaboureau et al., 2002; Vukicevic et al., 2006; Zupanski et al., 2011b]. IR Tb is
available for both daytime and nighttime, while the visible channel is generally available only for daytime. In
particular, 11 μm channel has the least molecular absorption and the spatially homogeneous surface
emissivity [Hulley and Hook, 2011]. Thus, it has been used for wide variety of model evaluation studies
[Morcrette, 1991; Chevallier and Kelly, 2002; Cintineo et al., 2014; and others described in section 1]. Recently,
operational and forecasting research centers start producing simulated satellite IR images from high-
resolution mesoscale modeling, and the simulated satellite fields are available in real time and utilized by
forecasters [Clark et al., 2012; Bikos et al., 2012].

As an example, this study uses IR Tb measurements from the Moderate Resolution Imaging Spectroradiometer
(MODIS) aboard the polar-orbiting Aqua satellite. MODIS is the cross-tracking visible IR radiometer with a
±55° wide viewing angle that yields approximately 2400 km swath width. The data used here are the 5 km
resolution aggregated L1B product (MYDSH01).

Figure 1a shows the Aqua MODIS (hereafter just denoted as MODIS) band31 (bandwidth 10.780–11.280μm)
Tb11μm observations over the AMMA domain (nighttime overpass around local 1 A.M.). A region of very
low Tb11μm (less than 220 K) centered in the domains represents a MCS. Slightly low Tb (260–270 K) suggests
the presence of boundary layer clouds. Moderately low Tb (220–260 K) could represent midlayer clouds or
boundary layer clouds overlapped by thin cirrus clouds. High Tb (exceeding 280 K) generally represents
surface skin temperature.

MODIS-observable Tb11μm is computed by the G-SDSU visible IR simulator (R-STAR Version 6b, http://
157.82.240.167/~clastr/dl/rad.html) through a discrete-ordinate radiative transfer scheme [Nakajima and
Tanaka, 1986, 1988; Stamnes et al., 1988]. Satellite swath and local incidence angle are estimated from satellite
orbit and sensor scan module [Matsui, 2013] that accounts for the Aqua satellite orbit and the MODIS cross-
track scanning.

The three-dimensional atmospheric state (pressure, temperature, humidity, and height), particles/drops
(aerosol, cloud, and precipitation), and surface state (skin temperature) at 01 Z 5 August 2006 are used to
simulate MODIS Tb11μm. Figure 1b shows simulated MODIS Tb11μm, which features a region of very low
Tb11μm (less than 220 K) around the center of the domain, representing the impact of the simulated MCS.
Note that the MCS is simulated by the inner domain (dx=dy= 2 km) in order to resolve cloud dynamics
within theMCS. In comparison with the observations (Figure 1a), the simulatedMODIS scene does not feature
widespread moderately low Tb11μm (220–280 K) in the domain, especially over the southeast region.

For simple quantitative metrics, spatial and statistical evaluations are useful standard methods for model
evaluation [e.g., Söhne et al., 2008; Chaboureau et al., 2012]. Spatial evaluation is based on the difference
in Tb11μm between the observation and the simulation in the identical map coordinate (Figure 1c). It simply
and clearly presents biases in location and magnitude of Tb11μm associated with the locations of MCSs or
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high cloud cover (|dTb11μm| greater than 40 K) and middle/low/overlap cloud cover in the NU-WRF
simulations (|dTb11μm| = 10–40 K). To the first order, spatial evaluation in Tb11μm is quite a useful metric for
assessment of the weather forecasting quality of cloudiness for mesoscale modeling, which is often related to
the errors in initial atmosphere-land conditions and lateral boundary forcing. Therefore, the spatial Tb11μm
evaluation could be further incorporated into the cloudy affected radiance assimilation for mesoscale
models [Zupanski et al., 2011b; Polkinghorne and Vukicevic, 2011; Vukicevic et al., 2006; Seaman et al., 2010].
Another unique approach is a time series objective verification of cloud cover through IR and microwave Tb
for deterministic forecasting [Söhne et al., 2008] and for ensemble forecasting [Chaboureau et al., 2012].

The statistical evaluation is useful for assessment of the model physics biases within the domain [e.g.,
Chaboureau et al., 2002; Grasso and Lindsey, 2011]. Normalized histograms (probability density) of the MODIS
Tb11μm are constructed from the MODIS observations and the G-SDSU simulations (Figure 1d). First, we
discuss relative frequencies between the observed (red open circles) and simulated (red closed circles).
Between 200 K and 240 K in Tb11μm, the simulation overestimates relative frequencies against the observed
frequencies, reflecting the overestimation of high cloud cover or its optical thickness in the domain. For
the Tb11μm ranges from 240 K to 280 K, the simulation underestimates relative frequencies, suggesting
that the NU-WRF simulation could underestimate middle/low/overlap cloud cover. For Tb11μm higher than
280 K, the simulation overestimates the relative frequencies, suggesting that the simulation tends to have
more areas of noncloudy pixels in the domain, compared to the MODIS observations. It probably requires
careful modification of cloud droplets evaluation in subsaturated environment in order to mimic thin
planetary boundary layer (PBL) clouds in the continental environment at this grid resolution, since PBL clouds
are not well resolved at this resolution.

Figure 1. (a) Observed and (b) simulated Aqua MODIS brightness temperature [°K] at 11μm (Tb11μm) over AMMA domain
at 01 Z 6 August 2006. (c) Spatial difference in MODIS Tb between simulation and observation for the same period.
Spatial correlation is 0.26. (d) Probability density (both normal and cumulative) of MODIS Tb11μm.
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Cumulative histograms can be used to emulate the cloud areal cover in the domain (Figure 1d). Often,
assessment of areal fraction of cloud cover is always arguable, as cloud fraction varies among different
satellite products due to sensor resolutions, cloud detection algorithms, and satellite orbiting patterns.
Here the simple yet robust Tb coverage method is addressed. Assuming the presence of cloudy pixel
based on a threshold of Tb11μm of 273 K, the cumulative histograms suggest that domain coverage of cloud
fraction is 0.5 in the observation and 0.3 in the simulation (Figure 1d). If one reduces the threshold from 273 K
(Tb emitted from low-middle-high clouds) down to 255 K (Tb emitted only from middle to high clouds), the
simulation underestimates the total domain cloud fraction; on the other hand, if we further reduce the
threshold Tb11μm from 255 K down to 220 K (Tb emitted only from high clouds), the simulation overestimates
the domain cloud fraction. By looking at all Tb11μm threshold spectrum, we can evaluate cloud coverage
at different levels: the simulation overestimates (underestimates) high cloud (middle/low/overlap cloud)
cover. Although this method is very simple, cloud cover can be defined bymodelers with threshold of Tb11μm
and remain consistent between the simulation and the observations [e.g.,Morcrette, 1991; Chaboureau et al.,
2000; Keil et al., 2003; Otkin et al., 2009].

With proper initial conditions and after a sufficient spin-up period, simulation biases appearing in both
relative and cumulative frequencies in this analysis are usually related to themodel physics and dynamics in a
particular thermodynamics environment rather than the uncertainties in the initial/boundary conditions,
while often separating the issue of forecasting error in the MCS location. For example, the middle/low/
overlap cloud underestimation in the NU-WRF could be due to misrepresentations in cloud microphysics,
PBL mixing, atmospheric heating due to mineral dust aerosols (discussed later), and/or the model horizontal
and vertical resolutions.

Besides using satellite simulators, we want to verify a more traditional approach to determine cloud top
temperature (TCT) in comparison with satellite-derived TCT product. Traditionally, when comparing satellite-
derived TCT, modeler often use the air temperature at the highest cloudy grid level based on an arbitrary
threshold of total cloud mass concentration (sum of ice and cloud droplets). In this approach, the definition
of “cloudy” grid level depends on the threshold values of total cloud mass concentration. Figure 2
demonstrates the differences between Tb11μm and TCT from three different thresholds of cloud mixing ratio.
Figure 2 (top) shows the spatial differences, while Figure 2 (bottom) shows scatterplots. We will briefly
examine the feasibility of the traditional method by comparing with the simulator-generated Tb11μm and
identify the relationship between them.

The strictest threshold (qthresh = 0.0001 g m�3) overestimates cloudy pixels, and, consequently, the
TCT becomes significantly lower than the Tb11μm over the southern part of the domain, featuring thin
cirrus clouds. Scatterplots suggest differences increase up to 100 K. With the moderate threshold
(qthresh = 0.001 g m�3), overestimation of cloudy pixels is reduced in the domain, and TCT � Tb11μm
differences lessens to 70 K in the scatterplots. The largest threshold (qthresh = 0.01 g m�3) underestimates
most of the thin cirrus and cumulus pixels over south of the domains and pixels around the edge of
the MCSs, and the scatterplots show that the TCT becomes significantly higher than the Tb11μm (~80 K).
Over cloudless pixels (upper central portion of the domain), TCT (surface skin temperature) is up to
10 K higher than Tb11μm, since the simulated Tb11μm is reduced from surface skin temperature due to
small effect of surface emissivity and molecular absorption. The scatterplots of all three thresholds
(and other thresholds not shown here) show large discrepancies between TCT and Tb11μm. This simple
exercise demonstrated that traditional method for determining TCT is not consistent to the simulated
Tb11μm, which is the major channel that determines TCT in the satellite retrieval algorithm [Rossow and
Schiffer, 1991].

Another application of using Tb11μm-based model evaluation is addressed with geostationary satellite
measurements. Unlike polar-orbiting satellites, a geostationary satellite allows evaluation of Tb11μm at
finer temporal resolution including diurnal cycles [Morcrette, 1991; Söhne et al., 2008; Otkin et al., 2009;
Grasso et al., 2010; Cintineo et al., 2014]. For example, Söhne et al. [2008] used 3-hourly Meteosat Tb to
evaluate the quality of model forecasts of cloud cover in the AMMA framework. The data used in this study
are the merged IR product, which combines all available IR window Tb from different geostationary
satellites and empirically corrects for viewing angle effects [Janowiak et al., 2001]. Figure 3a shows a 2 day
time series of Tb11μm histograms derived from observations and the NU-WRF simulations.
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As discussed in reference to Figure 1d, Tb11μm greater than ~280 K approximately represents surface skin
temperature in this environment; Tb11μm of 260–280 K represents pixels of low clouds, Tb11μm of 220–260 K
represents pixels of middle or overlapped clouds, and Tb11μm lower than 220 K represents pixels of high
clouds. Thus, the time series of the Tb11μm histogram corresponds with diurnal cycles of cloudiness and
surface temperature in the domain (Figure 3a). The observation shows that maximum Tb11μm peaks at
local solar noon (corresponding to 12 Z), on 5 and 6 August; the skin temperature starts to increase after
sunrise (06 Z) and peaks at noon (~12 Z); and after sunset (18 Z), it decreases slowly by IR radiative cooling
until the next sunrise. The prevalence of observed low Tb11μm (below ~225 K) peaks approximately 6 h
after (~18 Z) the peak of the surface skin temperature, suggesting the buildup of deep clouds and cirrus
anvils during the late afternoon, while the simulated Tb11μm does not exhibit this feature. The NU-WRF
simulation captures the initial development of increasing the occurrence of low Tb11μm around at 18 Z on
5 August, but the region of low Tb11μm is maintained until 18 Z of the next day (6 August); when the low
Tb11μm increases further. Overall, the NU-WRF simulation appears to capture the afternoon convection
properly on 5 August, but the dense high clouds (anvils) persist longer than the observations.

To quantify observation-model differences, a 2 day time series of differences between observed and simulated
Tb11μm is calculated (Figure 3b). This plot clearly indicates that the simulation overpredicts the pixels with
Tb11μm of 280–290K throughoutmodel integration, while it underestimates the pixels withTb11μm greater than
290 K. This illustrates that simulated surface skin temperature is generally lower than the observations for
daytime (~10 K) as well as nighttime (~3 K). Underestimation of surface skin temperature has often been
reported especially over less vegetated surfaces [Bosilovich et al., 2007] possibly due to misrepresentation of (i)
surface heat capacity and/or (ii) turbulent roughness coefficients in the land surface model.

For the time series of Tb11μm histograms lower than 280 K, the simulation severely underestimates
(red shaded) pixel counts withTb11μm of 250–280K throughout the simulation integration, while it overestimates
(underestimates) pixel counts of low Tb11μm less than 250 K for early (later) periods. This physically represents

Figure 2. Comparison between simulated MODIS Tb11μm and cloud-top temperature (TCT) derived from three different
thresholds (qthresh = 0.0001, 0.001, 0.01 g m�3). Top panel shows spatial comparison, while bottom panel shows differ-
ences in scatter plot diagram.
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NU-WRF underestimation of low
and midlayer cloud coverage, and
overestimation of high clouds in this
particular simulation. The underestimation
of the high cloud cover during the early
periods is attributed to the model spin-up
of mesoscale dynamics, while the
overestimation of high cloud cover in the
later periods is attributed to physics
biases in this simulation environment.
These conclusions qualitatively agree
with the evaluation using the MODIS
measurements (Figure 1d) and lend
confidence that high temporal resolution
analysis using geostationary satellites can
effectively reveal diurnal cycles of
cloudiness and surface skin temperatures
[e.g., Morcrette, 1991].

Another interesting channel, not explored
in this manuscript, is a water vapor
channel (5.7 to 7.1μm) [e.g., Chaboureau
et al., 2000; Keil et al., 2003; Grasso et al.,
2010]. With this channel, approximate
amount of column water vapor can be
evaluated via satellite-observed and
simulated Tb. As mentioned, one-channel
IR Tb techniques often limit separating
midlevel clouds and a combination of low
and high cloud cover. In that case, more
advanced two-channel IR Tb techniques
permit validating cirrus clouds
[Chaboureau and Pinty, 2006].

4.2. Aqua AMSR-E Microwave Tb

In contrast to the IR window channel
described in the previous section, the
microwave spectrum is characterized by

longer wavelengths (submillimeter to several centimeters) that are generally less sensitive to smaller particles
such as aerosols and cloud droplets but more sensitive to large rain drops and large precipitating ice, as well
as land surface characteristics. It also has unique sensitivity to water vapor and other gaseous species at some
microwave frequencies. As such, passive microwave remote sensing has been applied to various Earth
Science applications in studying precipitation, thermodynamics (water vapor and temperature sounding),
land surface (soil moisture and flooding), and ocean processes (sea ice, sea surface temperature, and wind
speed) [Ulaby et al., 1981].

The Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) is the conically
scanning passive microwave imager that senses radiance at six frequency (6.9–89GHz) with vertical and
horizontal polarization [Kawanishi et al., 2003]. The AMSR-E instrument is aboard the Aqua satellite together
with the MODIS sensor. In comparison with lower frequency channels, Tb at 89GHz channel (~3.36mm
wavelength) have higher spatial resolution (instantaneous field of view: 3.5 × 5.9 km2), is sensitive to the
presence of ice aloft associated with deep convection, and is commonly used to detect raining pixels and
surface precipitation in the satellite retrieval over land [Olson et al., 2001b]. Thus, high-frequency microwave
Tb can be utilized to examine precipitation processes and precipitation microphysics [Wiedner et al., 2004;
Burlaud et al., 2007; Matsui et al., 2009; Li et al., 2010; Gao et al., 2011; Han et al., 2013].

Figure 3. (a) Observed and simulated times series of Geostationary satellite
Tb11μm histogram. (b) Time series of observation-simulation differences
of Tb11μm histogram (Both color bars represent frequency in %.).
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Figure 4a shows AMSR-E-observed Tb at 89 GHz(V) over the AMMA domain. There are a couple of large
depressions of Tb89GHz(V) consistent with the center of the MCS captured by the MODIS Tb11μm (Figure 1a).
The presence of significant amount of large ice particles (such as snow aggregate, graupel, or hail) tends
to scatter the upwelling surface emission of microwave electromagnetic energy back toward the surface.
As a result, top-of atmosphere (TOA) emergent microwave radiance is reduced and appears low. The large-
size ice particles settle downward and eventually melt and precipitate. Background Tb89GHz(V) (greater
than 270 K) is associated with surface skin temperature and water vapor emission in the lower
troposphere. In comparison with the MODIS Tb11μm scene (Figure 1a), spatial patterns of Tb89GHz(V)
demonstrate no significant sensitivity of Tb89GHz(V) to small cloud particles over the domain.

G-SDSU passive microwave simulator computes TOA emergent microwave Tb by treating two-stream
radiative transfer calculations with the Eddington’s second approximation along the slant radiance path
[Kummerow, 1993; Olson et al., 2006; Matsui et al., 2013]. For bottom boundary conditions, wind-induced
changes to the water body emissivity at vertical and horizontal polarization are considered over ocean and
lake. Over the land surface, an observation-based microwave emissivity database (tool to estimate land-
surface emissivities at microwave frequencies (TELSEM)) [Aires et al., 2011] is used to estimate land surface
emissivity. In this radiative transfer scheme, horizontal and vertical polarization is considered only at the
surface. Rigorous satellite orbit, sensor scanning, and associated antenna gain functions of the AMSR-E
[Kawanishi et al., 2003] are incorporated to achieve a realistic representation of microwave sensor-observable
Tb [Matsui, 2013].

Figure 4. (a) Observed and (b) simulated Aqua AMSR-E brightness temperature (K) at 89GHz over the AMMA domain
around at 01 Z 6 August 2006. (c) Spatial difference in AMSR-E Tb at 89GHz(V) between simulation and observation
for the same period. (d) Cumulative relative frequency histogram of AMSR-E Tb.
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Figure 4b shows AMSR-E Tb89GHz(V) simulated from the NU-WRF simulation. Similar to the observation, the
simulated MCS generates a region of Tb89GHz(V) low Tb in the middle of the domain, which is associated
with cold-rain processes. Figure 4c shows the geolocation error of raining pixels. A region of Tb89GHz(V)
depression is shifted ~400 km between the observation and the simulation, suggesting the forecast errors.
This spatial analysis of microwave Tb can be further used for microwave radiance-based precipitation
assimilation [Aonashi and Eito, 2011; Zupanski et al., 2011a; Zhang et al., 2013]. Figure 4d shows the cumulative
frequencies for 89GHz, 36.5 GHz, and 18.7 GHz channels sampled only from the scattering pixels of Tb89GHz(V)
less than 270 K (i.e., raining pixels in Figure 4b). Compared to the observations, the simulation overestimates
the depression of Tb for all frequencies, especially at 89GHz, suggesting the overestimation of ice aloft and
the uncertainties due to size and effective density [Matsui et al., 2009; Han et al., 2013] or alternatively
uncertainties of ice single-scattering properties [Meirold-Mautner et al., 2007]. However, we should mention
that Mie calculation with effective mixture assumption, implemented in this study, tends to have larger
forward scattering than realistic nonspherical models; thus, Tb depression become even larger with more
realistic nonspherical snow single-scattering model [Liu, 2004].

We should emphasize that the purpose of using microwave Tb to analyze precipitation processes and
microphysics over land, instead of using surface precipitation product, is to avoid the large uncertainties of
precipitation estimates from satellite passive microwave sensors. One uncertainty of microwave-based
rainfall estimates is attributed to the complex profile of raining and nonraining particles. Unlike radar, a
passive microwave imager receives microwave emission/scattering signals from the entire atmospheric
profiles and surface. Thus, microwave signals are more directly linked to the column total rainwater path
(TRWP) than surface rainfall rate [Liu and Curry, 1992].

Figure 5 demonstrates (a) the correlations of TRWP and AMSR-E Tbs and (b) the correlations of surface
instantaneous rainfall rate and AMSR-E Tbs from the NU-WRF simulation. It is obvious that the microwave Tb
depressions are better correlated with total rainwater path (Figure 5a: p=�0.77 at 89GHz, p=�0.54 at
36.5 GHz, p=�0.54 at 18.7 GHz) than the surface rainfall rate (Figure 5b: �0.31 at 89 GHz, �0.11 at 36.5 GHz,
�0.17 at 18.7 GHz). High-frequency Tb89GHz(V) is depressed more than the low-frequency Tb in response to
TRWP due to its shorter wavelength and the smaller footprint size.

Surface rainfall rate, in this context, is the instantaneous rainfall flux at the surface, which is more closely
related to “near-surface” liquid rain rather than the ice aloft. Low-altitude liquid raindrops can be detected
from the low-frequency emission only if surface emissivity is sufficiently small, such as over water bodies
(lake and ocean). However, land surfaces typically have high surface emissivity that obscures the emission
signal from near-surface rain. Therefore, rainfall retrieval over land heavily relies on high-frequency Tb
depressions associated with ice aloft [Kummerow et al., 2001]. Continental dry boundary layers often
evaporate raindrops before reaching the surface, i.e., virga [Fraser and Bohren, 1992]. All of these issues
hamper rainfall retrieval over land. Thus, for given uncertainties in the over-land rainfall retrieval by passive

Figure 5. Scatterplots of AMSR-E Tb and (a) total rain water path (TRWP) and (b) surface rainfall rate. Pearson correlation
coefficients are also shown in the plot.
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microwave remote sensing, it is more direct to compare microwave Tb depression between satellite
observations and model simulations than surface rain rate, as long as microwave Tb is properly simulated
from the model.

Over land, at low microwave frequency such as 6 GHz, the atmosphere becomes more transparent, and the
signals of cloud and precipitation particles become negligibly small. At this frequency, TOA microwave
radiance is most sensitive to the surface conditions: water/land surface, wetness, soil-vegetation roughness,
and terrain structure. AMSR-E has been used for retrieving the land surface soil moisture [Njoku et al., 2003]
and flood detection [Temimi et al., 2012]. The emissivity-polarization difference (difference of Tb between
vertical and horizontal polarization) of low-frequency microwave Tb is very sensitive to the presence of
surface standing water [Prigent et al., 2007]. Figure 6 shows the polarization difference of microwave
brightness temperature (dTb6GHz = Tb(V) � Tb(H)) from AMSR-E Tb at 6 GHz. Over ocean, dTb6GHz ranges up
to 80 K due to large emissivity-polarization difference of water bodies. The simulation from NU-WRF shows
the same large values of dTb6GHz over the ocean. However, AMSR-E observations also show the large
depression of dTb6GHz around the area of MCS area over land, while there is no such large dTb6GHz in the
simulation. Note that MODIS Tb11μm and AMSR-E Tb89GHz demonstrated that MCSs are in both the observed
and simulated scene (Figures 1 and 4).

Although there are no in situ observations, the ocean-equivalent level of the dTb depression over land
suggests the presence of significant amount of standing water due to temporary flooding from the
propagating MCSs [Prigent et al., 2007; Temimi et al., 2012]. Flooded grassland and savanna (around the
Sahara-Sahel border) are very common in the tropics and subtropics area over this region. The standing water
greatly changes the surface emissivity from land (~0.9) to water (~0.4), and as a result, TOA polarization
differences become very large and close to that of ocean. The missing Tb depression in Figure 6b is a
direct result of (i) no parameterization of this effect in the model and (ii) using the empirical land surface
emissivity database TELSEM, which is a monthly scale climatology that does not account for intramonth or
interannual surface water variability. TELSEM has been developed mainly to provide first-guess emissivity
information that is refined during a retrieval process (e.g., assimilation) although the direct use of TELSEM,
as in this study, for simulation/observation comparison has shown its positive impact in most continental
areas [Aires et al., 2011].

To improve forward calculations, the inundated area must be treated as water body for computing the
surface emissivity. Unfortunately, the Noah Land Surface Model (LSM) used in the NU-WRF simulation
does not predict standing water; rather, all residuals of surface rainfall, canopy interception, and surface
infiltration become runoff to discharge into rivers immediately without surface ponding. Surface-standing
water is an important (and ongoing in land component in the NU-WRF) consideration for future
LSM development within the Earth System modeling system [Dadson et al., 2010], not only for improved
surface emissivity and forward radiative transfer modeling but also for better describing surface energy
exchanges and skin temperatures.

Figure 6. Polarization difference (Tb(V) � Tb(H)) in AMSR-E Tb at 6GHz from the observation (OBS) and simulation (SIM).
Observation shows very strong polarization difference under the area of the MCS, indicating the presence of standing water.
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4.3. Combined Aqua Microwave-Infrared Brightness Temperature

One primary benefit of using simultaneous multisensor satellite observations and simulators is to take
advantage of the different signal sensitivities (e.g., AMSR-E 89GHz and MODIS 11μm IR channels). The
previous sections show the Tb11μm sensitivity to the TCT and microwave Tb sensitivity to ice aloft. If these are
combined, it allows amore complete view of cloud-precipitation processes [Liu et al., 1995]. Figures 7a and 7b
shows the MODIS Tb11μm (below 273 K, gray shade) overlaid with the AMSR-E Tb89GHz(V) (below 270 K,
color shade). The picture clearly shows the AMSR-E Tb depressions (raining pixels) are located in themiddle of
the gray-shaded convective system. In the south part of the domain, the combined observations show the
presence of midlevel clouds under cold-rain processes; these are also seen in the simulation, although
geolocations are quite different.

For a more quantitative analysis in the domain, joint diagrams of the MODIS Tb11μm and the AMSR-E
Tb89GHz(V) are formed (Figures 7c and 7d). This is a combination of histograms from Figures 1d and 4d but
provides an additional dimension in occurrences of different cloud types. Our joint diagram is very close to
that of Liu et al. [1995], which uses IR Tb and microwave index that accounts for both scattering and
emission of microwave Tb, since their focus region was over ocean, where emission signals could be
detected. This method is to simply use depression (scattering signals) of high-frequency microwave Tb in
addition to IR Tb, thereby allowing validation over land.

Two thresholds in the Tb11μm are selected; a 220 K threshold for separating high and middle clouds, while
a 260 K threshold for separating middle and low clouds [Matsui et al., 2007]. Often used is 220 K as a
threshold of rainfall pixels, such as for the GOES precipitation index [Arkin et al., 1994]. We also use two

Figure 7. (a) Observed and (b) simulated combined AMSR-E Tb89GHz(V) and MODIS Tb11μm for the period corresponding
to Figure 4. MODIS Tb11μm is shown only if Tb is less than 273 K (gray shade), and AMSR-E Tb89GHz(V) is shown only if Tb
is less than 270 K (color shade). Red line is CALIPSO-CloudSat overpass. (c) Observed and (d) simulated joint MODIS
Tb11μm-AMSR-E Tb89GHz(V) histogram (color bars represent frequency in %). Clouds are categorized into seven classes
based on artificial thresholds of MODIS Tb11μm and AMSR-E Tb89GHz(V): Nonraining low cloud (NL), nonraining middle
cloud (NM), nonraining high cloud (NH), raining low cloud (RL), raining middle cloud (RM), raining high cloud (RH),
deep convective core (CC). Populations of each category are also displayed.
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thresholds for Tb89GHz(V): 270 K for separating raining and nonraining clouds, and 130 K for identifying
very large amounts of ice, associated with deep convective cores [Olson et al., 2001b]. With these selected
thresholds, we can group the observed microwave IR Tb into seven categories of cloud levels and
precipitation (Figure 7c): Nonraining low cloud (NL), nonraining middle cloud (NM), raining low cloud (RL),
raining middle cloud (RM), raining high cloud (RH), and deep convective core (CC).

These classifications, thresholds, and interpretations could and should vary depending on the environment:
e.g., maritime, midlatitude or high-latitude have different types of cloud-precipitation processes, background
temperatures, and humidity profiles, since the exact link between the “rainfall rate” and Tb89GHz(V)
depression is difficult to identify with passive microwave imagers (Figure 5). We should also mention that IR
Tb range of Tb11μm between 220 and 260 K cannot be attributed to midlevel clouds only as discussed
before. It is well known that cirrus and midlevel clouds can have the same brightness temperature in the
infrared window [Chaboureau and Pinty, 2006].

The overarching point here is that this categorization can be made from the satellite-measured L1 radiance
data without any physical assumption of a satellite retrieval algorithm, and the same diagram can be
made from the simulation through the multiinstrumental simulators. Figure 7d shows the simulated joint
Tb11μm-Tb89GHz(V) diagram from the NU-WRF simulation. In general, the simulation captures qualitatively
similar distributions to the observed diagram but with quantitative differences (Figure 7c). Satellite
observations suggest that total nonraining cloud classes (NL +NM+NH) occupy 94.6% of total pixels, while
the simulation diagram shows 91.6% of all pixels, which are quite similar. However, among nonraining
classes, high clouds (NH) are 5.6% (=5.33%/94.6%) in the observed diagram and 36.6% (=33.5%/91.6%) in
the simulation, while low clouds (NL) are 66.2% (=62.6%/94.6%) in the observed diagram and 32.3%
(=29.6%/91.6%) in the simulated diagram. Thus, the simulation severely overestimates nonraining high
clouds (NH) and underestimates nonraining low clouds (NH).

Further among high raining pixels (RH+CC), one can estimate the convective-stratiform ratio, 1.3:98.7 in the
observations and 2.0:98.0 in the simulations, which are quite close to each other. This is a practical and
consistent way to separate convective and stratiform rain fraction for both observation and simulation, since
most of the traditional methods are either simulation-based (using updraft velocity) or observation-based
(using melting layer) methods [Lang et al., 2003].

Alternative cloud classifications have been proposed before: (i) the International Satellite Cloud Climatology
Project (ISCCP) cloud diagram that classifies cloud type by cloud top pressure and optical depth via visible
IR sensors [Rossow and Schiffer, 1991] and (ii) a Het-TbIR diagram that classifies raining cloud type via radar
echo top height and IR Tb [Masunaga et al., 2008; Matsui et al., 2009]. One advantage of this joint MODIS
Tb11μm-AMSR-E Tb89GHz(V) over the ISCCP classification [Rossow and Schiffer, 1991] is that observations are
always available at both daytime and nighttime pass, since this does not rely on visible channels.
Alternatively, one advantage of the ISCCP classification over the MODIS Tb11μm-AMSR-E Tb89GHz diagram is
that cirrus is well determined, because of using visible band (identifying cloud optical depths). Another
advantage of this method over the Het-TbIR classification [Masunaga et al., 2008] is that passive IR and
microwave sensors have large spatial coverage (1445 km of swath: AMSR-E) in comparison with radar
instruments (250 km of swath). In addition, similar diagrams can be constructed from various satellites
that carry passive visible IR and microwave sensors, such as the Tropical Rainfall Measurement Mission and
Suomi National Polar-orbiting Operational Environmental Satellite System Preparatory Project satellites, to
name a few.

4.4. CALIPSO, CALIOP, and CloudSat CPR Sensors

Space-borne active sensors are relatively new instruments in comparison with passive instruments. Active
sensors transmit electromagnetic energy to Earth, and backscattered energy is used to determine the
distance and characteristics in the atmosphere and surface. Simultaneous use of active- and passive-sensor
observation also avoids nonsingularity issue of single-channel radiance-based evaluation approach as
mentioned in section 2. The Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) is a dual-wavelength
(562 nm and 1064 nm) polarization-filtered lidar aboard the Cloud-Aerosol Lidar and Infrared Pathfinder
Satellite Observations (CALIPSO) satellite [Winker et al., 2009]. The CALIPSO satellite is part of the A-Train
Constellation and has provided on-nadir view of vertical profiles in clouds and aerosols since April 2006
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[Winker et al., 2007], complemented by the wide-view images from the AMSR-E and the MODIS instruments
of the Aqua satellite. Lidar backscattering signals have been simulated for assessing ice clouds [e.g., Chiriacho
et al. 2006] and mineral dust [e.g., Chaboureau et al., 2011].

Figure 8a shows CALIPSO backscatter signals B532nm and color ratio (R532nm/1064nm = B532nm / B1064nm) over
West Africa (where CALIPSO overpass information is shown in Figure 7). Small backscatter (B532nm less
than 0.001 km�1 sr�1, blue shade) represents atmospheric molecular densities; medium backscatter
(B532nm: 0.001–0.05 km�1 sr�1, yellow-to-red shade) represents either mineral dust particles (color ratio less
than ~1.2) over the Saharan desert below 5 km above sea level (ASL) or ice crystals (color ratio greater
than ~1.2) of cirrus clouds above 10 km ASL; and strong backscatters (B532nm greater than 0.05, white shade)
suggest presence of liquid cloud droplets from the boundary layer clouds across the domain. In general,
cloud liquid droplets have much larger extinction than ice crystals and mineral dust particles [Yoshida et al.,
2010; Zhang et al., 2010; Hu, 2007]. Backscatter signals below thick ice clouds or liquid clouds are strongly
attenuated due to large extinction by cloud layers. As discussed in analysis of the previous section, high
MODIS Tb11μm (~273 K, dark patchy shade in Figure 8a) represents shallow clouds capping a deep continental
boundary layer at ~5 km ASL. Medium ranges of the MODIS Tb11μm (~220 K, gray shade in Figure 7a) in
the south of the domain are revealed as shallow boundary layer clouds overlapped by cirrus clouds, which
could not be revealed by diagnosing Tb11μm only, although two-channel IR Tb techniques permit validating
cirrus clouds [Chaboureau and Pinty, 2006].

The G-SDSU lidar simulator is built upon the identical visible IR optics module that shares single-scattering
parameters between visible IR simulator and lidar simulator. The lidar simulator utilizes total extinction
and backscattering (phase function of 180°) for computing the total backscattering coefficient at wavelength
of λ (βλ),

βλ ¼ σλ lð Þ exp �2∫
l

0
τλ lð Þdl

� �
;

where σλ is a total backscattering coefficient that integrates molecular, aerosol, and cloud backscattering
coefficients; and τλ is total optical depth that also integrates molecular, aerosol, and cloud optical depths

Figure 8. (a) Observed and (b) G-SDSU simulated CALIPSO CALIOP B532nm (km�1 sr�1) and color ratio (B1064nm/B532nm)
over the West Africa. CALIPSO satellite overpassing is shown in Figures 7a and 7b. Overpassing of 0 –2200 km corresponds
to north-to-south orientation.
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[Platt, 1973]. The exponential term represents attenuation of lidar signals from instrument to the target
atmosphere, represented by the length, l. Multiple scattering and instrumental random noise are not
included in the lidar module [Hogan and Battaglia, 2008], since the model evaluation does not focus on
microphysics profiles in the thick clouds using the CALIOP instruments.

Figure 8b shows the simulated CALIOP backscatter signals B532nm and color ratio over West Africa. The
simulated CALIOP signals show realistic B532nm profiles that represent background molecular density,
aerosols, and cloud profiles. Aerosol signals are distributed around up to 5 km ASL over the Saharan desert,
while cirrus cloud signals are distributed around 10–15 km ASL over the ocean. These are in reasonable
agreement with the observations (Figure 8a). However, as pointed out in the Tb11μm analysis, shallow
boundary layer clouds are missing in the NU-WRF simulations in the domain. Also, dust signals appear to be
too strong in NU-WRF, and simulated B532nm begins attenuation in the middle of the dust layer.

Figure 9 shows the NU-WRF-simulated geophysical parameters along the CALIPSO overpass. Temperature
profiles indicate the freezing level is near 4 km above ground level (AGL). Liquid cloud droplets are
present below 2 km ASL. Aerosol mass concentration is mostly confined below 5 km ASL, and mineral dust
represents more than 90% of total aerosol mixing ratio in this level. Between 900 and 1200 km of the
horizontal transect, mineral dust overshoots to 5 km ASL, and it creates unrealistic CALIPSO dust signals in the
middle troposphere. Thus, as pointed out earlier, the NU-WRF simulation overestimates the amount of
mineral dust, and the simulated backscatter signals are strongly attenuated near the surface.

The CloudSat Cloud Profiling Radar (CPR) is the first spaceborne 94 GHz (W band) cloud radar [Tanelli et al.,
2008]. This millimeter wavelength radar resolves cloud and light precipitation processes along with the
nearly simultaneous CALIPSO measurements and also overlaps with other A-Train satellite measurements
[Stephens et al., 2002]. Figure 10 shows observed and simulated CloudSat CPR radar reflectivity profile
(color shade) on the background of the CALIPSO B532nm signals (gray shade). This clearly demonstrates the
different capabilities of lidar and cloud radar instruments. For example, most of the thin boundary layer-

Figure 9. (top) Temperature and cloud (ice and liquid) water content resampled along the CALIPSO overpass. (bottom)
Dust fraction (contour) and total aerosol mass concentration (shaded) from the NU-WRF simulation along the CALIPSO
lidar simulation. CALIPSO satellite overpassing is shown in Figures 7a and 7b. Overpassing of 0–2200 km corresponds to
north-to-south orientation.

Figure 10. (top) Observed and (bottom) simulated CloudSat CPR reflectivity (color shade) along with the CALIPSO CALIOP
backscattering signals (gray shade). CloudSat satellite overpassing is shown in Figures 7a and 7b. Overpassing of 0–2200 km
corresponds to north-to-south orientation.
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capped clouds and mineral dust layers are undetected by CloudSat, while the CloudSat radar reflectivity (Zm)
profile reveal the vertical extent of the deep convection and associated anvil. Simulations show similar features
of CPR signals below the CALIOP attenuation in the cloudy columns, while NU-WRF misses the convection in
the middle of the domain due to the forecasting error, resulting in the missing CPR signals. The NU-WRF
simulation also shows some dense-fog signals very low to the surface (below 2 kmAGL) across the right portion
of the overpass, probably because of using fixed sea surface temperature, although this near-surface fog
cannot be evaluated by the CloudSat observations due to surface clutter impact.

For more quantitative analysis, these vertical profile data can be recast in various statistical formats.
Figure 11a shows the CALIOP joint B532nm-R532nm/1064nm histogram (probability density). This diagram has
been used for the CALIPSO operational algorithm to classify backscattering signals into different aerosols
and cloud types [Omar et al., 2009]. For example, dust signals generally have lower backscatter (less than
0.005) and moderate color ratio (0.2–0.8). Cirrus clouds tend to have larger color ratio (greater than 0.8)
and moderate backscatter (less than 0.1). Middle and low stratus have liquid cloud droplets that peak strong
backscatter (greater than 0.1) and higher color ratio (greater than 0.9).

In contrast, the simulated values show a much different distribution across the joint B532nm-R532nm/1064nm

diagram. Overall, the color ratio tends to be small, and backscatters are also ranged below 0.1 due to lack of
the boundary layer clouds in the NU-WRF simulation. Dust backscatter is too large due to overestimated
dust amount in NU-WRF. Although cirrus clouds are abundant over the ocean in the NU-WRF simulation,
both the simulated backscatter and color ratio signals are too weak. These statistical biases suggest the
presence of cloud-aerosol microphysics biases in this NU-WRF simulation (e.g., PSDs) or in the G-SDSU’s
assumption of single scattering (Lorenz-Mie). Usually, spherical assumption create strong backscattering
peak in comparison with nonspherical solutions.

Figure 11b shows CloudSat CPR joint diagrams, which mimic the ISCCP diagram that use cloud top pressure
and cloud optical thickness. The current diagram, instead, utilizes the CPR echo top height (Htop: from-TOA-

Figure 11. Statistical composites of (a) observed and (b) simulated CALIPSO CALIOP joint B532nm-R532nm/1064nm
diagrams. Statistical composite of (c) observed and (d) simulated CloudSat CPR joint Hecho-Htop diagram. These dia-
grams suggest statistical populations of different aerosol and cloud types (gray bars represent frequency in %).
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to-BOA first pixels with three-consecutive significant (>�28 dBZ) Zm signals) and echo thickness (Hecho:
depth of continuous significant Zm signals). The observed diagram shows a spectrum of cloud types: the
small fraction of deep clouds and large fraction of midlevel clouds as shown in the horizontal strip (Figure 10).
On the other hand, the simulated Hecho-Htop diagram captures the stratus and near-surface clouds only.
These are visibly comparable to the horizontal strip in Figure 10, but the statistical plots can more
quantitatively assess the amounts of different cloud types.

While the combination of the CloudSat and the CALIPSO measurements successfully infers the vertical
profile of the atmosphere [Mace et al., 2009; Stein et al., 2011], these two instruments are nadir-viewing
sensors; thus, the spatial coverage is extremely limited in comparison with the passive visible IR or
microwave sensors as discussed in the previous sections. Examples of the statistical composite (especially
CloudSat) in our example are mostly attributed to forecasting errors. Therefore, CloudSat-CALIPSO data
should be analyzed through ensemble, long-term, or large-scale sampling for representing robust
statistics, or must be used in combination with wide-viewing passive sensors in the case of evaluating
short-term model simulations.

Both the CALIPSO B532nm and the CloudSat CPR Zm can be further formed into a contoured frequency of
altitude diagram (not shown here) to evaluate cloud and aerosol microphysics. More comprehensive
cloudmicrophysics evaluation using the CALIPSO/CloudSat backscatteringmeasurements has been explored
in Hashino et al. [2013]. Several cautions are discussed here for cloud-aerosol microphysics analysis using
the CloudSat CPR and the CALIPSO CALIOP backscattering measurements.

First, multiple scattering must be well represented in the forward model (not performed in this paper), if one
aims to diagnose CALIPSO backscatter within any kind of clouds or CloudSat Zm within deep convective
clouds [Winker, 2003; Hogan and Battaglia, 2008]. If not treated, multiple-scattered signals (pixel) must be
discarded from the analysis, using threshold of Zm [Battaglia et al., 2008; Hashino et al., 2013].

Second, uncertainties of single-scattering properties for simulating active instruments often become as
large as uncertainties from the particle composition and sizes when single scattering regimes of targeting
particles depart from Rayleigh scattering regime. For example, ice crystals and aggregate for CloudSat CPR
(W band) and mineral dust and ice crystals for CALIPSO CALIOP sensor (564 nm). More discussion is
explored in recent studies [Liu, 2004; Petty and Huang, 2010; Baum et al., 2005]. The bottom line is that the
nonspherical shape greatly affects backscattering signals and variability of phase functions and more
realistic computations from the T-matrix method [Mishchenko et al., 2004] or discrete dipole approximation
(discrete dipole scattering) [Draine and Flatau, 1994] tend to reduce backscattering efficiency by smoothing
the variability of phase function, if particles are randomly oriented. On the other hand, total extinction and
single-scattering albedo or asymmetry parameter are relatively less affected, since these parameters are
integrated over the entire scattering angles.

Third, particle size distributions (PSDs) of aerosol and cloud microphysics are preferably prognostic
parameters (two- or higher-order moments). If these are diagnostic parameters, there is little physical
reasoning to conduct detailed evaluation, unless the diagnostic microphysics parameters are consistently
represented and functioning in other physics processes, such as radiative heating (diagnostic PSDs affect
broadband single-scattering properties), terminal velocity (PSDs changes sedimentation of hydrometeor or
dry depositions of aerosols), and other microphysics processes (collision coalescence processes of
hydrometeor, coagulation of aerosols, etc.).

5. Summary and Conclusion

Through reviewing different types of analyses, multisensor satellite radiance-based evaluation methods
clarify the strengths and weaknesses of the NU-WRF simulation over West Africa. The spatial differences
reveal forecast errors, while the statistical composites tend to reveal biases in physics modules in the NU-WRF
simulation. Although this limited results cannot generalize the conclusion for NU-WRF performance of
different environments, these physics biases are summarized as follows:

Cloud Microphysics: Both IR Tb and CALIPSO backscatter evaluation revealed that the NU-WRF underpredicts
boundary layer shallow clouds, while IR and microwave Tb evaluation suggested that NU-WRF overestimates
cold-rain processes. These biases critically affect regional energy-radiation budget biases.
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Land surface: Time series analysis of IR Tb from Meteosat suggested that the amplitude of diurnal cycles in
daytime skin temperature is underestimated in the NU-WRF simulation over cloudless pixels. Polarization
differences in low-frequency microwave Tb suggest the presence of flooded grassland and savanna. The
current version of the Noah LSM and empirical emissivity databases do not predict such processes and
polarization-emissivity differences, and they must be accounted for to better represent surface energy fluxes
over the subtropical savanna regions.
Aerosols: Strong backscatter and attenuation of the CALIPSO backscatter suggests that mineral dust aerosols are
overestimated in the NU-WRF simulation. The dust overestimation is due to the initial attempt of adapting the
GOCART scheme on the cloud-resolving-scale simulations. The Goddard Chemistry Aerosol Radiation and
Transport (GOCART) has been developed and applied for climate-scale modeling (horizontal grid spacing is
about 1–2°). On this storm-resolving-scale simulation, surface winds become sharper by explicit treatment of
mesoscale dynamics; thus, it tends to overestimate surface dust emission using default wind threshold values.

Within the coupled modeling system, biases of physics modules summarized in this section are interactive
among different physics modules. For example, if dust emission is suppressed with improved surface
process, it alters atmospheric radiative heating rates (both shortwave and longwave) and could suppress ice
nuclei concentrations and, consequently, ice crystal production, which could modulate microphysics and
macrophysics structure of clouds precipitation processes. Changes in radiative heating can change local
thermodynamic profiles and mesoscale circulations and the timing of deep convection. Improvement of
microphysics could significantly adjust surface and atmospheric energy balance, alter surface precipitation
rates, and change soil moisture amount. Modification of the land surface parameterization also impacts
atmospheric processes and alters feedbacks with microphysics and aerosol processes.

Therefore, for a fully coupled regional Earth Systemmodel, multisensor evaluationmethods, demonstrated in
this manuscript, are encouraged to investigate overall performance and improvement, while avoiding
local tuning with use of limited satellite products or the limited number of radiance observations. Needless to
say, multievent, multiseason simulations, and ensemble forecasting over various climate regimes will provide
more robust evaluation of model dynamics and physics performance.

As summarized in section 2, radiance-based evaluation relies on understanding the radiance and backscatter
characteristics at different wavelengths and from different sensor platforms. Satellite raw radiance contains
more geophysical information from many atmospheric and land surface sources simultaneously. It often
provides benefit for evaluating various aspect of Earth System modeling. Users may create a customized
algorithm based on thresholds or simple statistical processes, as shown in our manuscript, to focus on a
specific geophysical parameter (either clouds, aerosols, or land) for evaluation. Readers may be interested
in other studies using similar approaches and alternative approaches through a number of references cited in
this manuscript.

The methods discussed in this manuscript can be applied to any regional model using multisensor satellite
measurements currently present in the space. Multiinstrumental radiance-based evaluation methods have
been initiated in recent years, coinciding with emergence of new satellite measurements, and there are a
number of different ways to interpret satellite radiance data and novel techniques to evaluate models.
This type of evaluation activity for regional Earth System modeling has been often lacking before. Therefore,
the principal aim of this manuscript is, by addressing simple examples, to motivate the modeling community
to properly and creatively incorporate the wealth of satellite measurements and instrumental simulators
when employing complex regional Earth System modeling analysis and development practices.

Appendix A: Single-Scattering Properties

NU-WRF’s native output can be directly processed by the G-SDSU. At each grid cell, NU-WRF output provides
(i) vertical profiles (terrain following coordinate) of temperature, geopotential height, pressure, humidity,
hydrometeors, and aerosols; and (ii) also provides surface fields including surface skin temperature, surface
pressure, terrain elevation, surface types, and latitude and longitude coordinates, which necessarily
characterize surface boundary conditions of radiative transfer. Information on hydrometeors and aerosols
depends on the complexity of the parameterizations used by the model. In addition to the Goddard
microphysics scheme, the G-SDSU supports the Lin scheme [Lin et al., 1983], WRF single-moment six-class
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microphysics scheme [Hong and Lim, 2006], National Center for Atmospheric Research two-moment
scheme [Morrison et al., 2005], Regional Atmospheric Modeling System one and two-moment schemes
[Walko et al., 1995; Meyers et al., 1997], and Hebrew University Cloud Model Spectra Bin Microphysics
[Khain et al., 2005]. For aerosols, the G-SDSU currently supports the GOCART scheme.

The consistency with model physics and different satellite simulators is a very important feature of the G-SDSU,
allowing physically consistent treatment between simulated geophysical parameters and single-scattering
integration (described later) among different satellite simulators. More details are explained hereafter.

For hydrometeors, the Goddard bulk one-moment microphysics scheme [Lang et al., 2007, 2011] explicitly
predicts mass mixing ratio for cloud droplets (qc), rain drops (qr), ice crystals (qi), snow aggregates (qs),
and graupel (qg). PSDs for rain, snow, and graupel are assumed to obey the following function:

dN Dð Þ ¼ NoD
μ exp �λDð Þ dD;

where N is the particle number concentration, D is a particle diameter, No is an intercept parameter, μ is a
shape parameter, and λ is a slope parameter. For rain, snow, and graupel particles, μ is set to be zero (e.g.,
exponential size distribution). The total particle number concentration (Nt) is now expressed as

Nt ¼ ∫N Dð ÞdD;

and mass is expressed by integration of number concentrations and unit-particle mass,

q ¼ π
6∫D

3ρ Dð ÞN Dð ÞdD
where ρ is particle density. For the one-moment scheme, No is assumed to be constant for rain and graupel,
and λ (inverse of effective particle size) varies as a function of total mass (q). This means that larger
mixing ratios have larger mean particle size. For snow, λ and No are parameterized by temperature and total
mass to mimic aggregation growth [Lang et al., 2011]. Cloud liquid particles applies the generalized gamma
size distributions with fixed effective radius (9μm in this study). Cloud ice crystal applies a temperature-
dependent effective radius following the empirical fitting from aircraft measurements [Heymsfield and Platt,
1984]. These specifications are consistent to the microphysics and radiation scheme in the NU-WRF.

The GOCART scheme predicts mass mixing ratio of dust (qdust), sulfate (qso4) and its precursor SO2 (qso2),
black carbon (qbc), and organic carbon (qoc), sea salt (qss), and other gaseous species. The PSD function is
assumed to be a lognormal distribution of radius (r).

dN rð Þ ¼ Ntffiffiffiffiffi
2π

p
r log σ ln 10

exp
1
2

log r � log rmod

log σ

� �� �
dr

where σ is standard deviation, rmod is mode radius, and Nt is the total number concentration. Dust and sea salt
have multimode PSDs, and each mode of mixing ratio is explicitly simulated [Chin et al., 2000; Ginoux et al.,
2001]. More importantly, the radius and PSDs of hygroscopic species (sulfate and its precursor, organic
carbon, and sea salt) depend largely on relative humidity. Refractive index and mode radius of each species
are essentially based on the optical properties of aerosols and clouds (OPAC) database [Hess et al., 1998].

The G-SDSU converts this particle information (sizes and species) to single-scattering properties, including
extinction efficiency, single scattering albedo, moments of phase function, and backscattering coefficients.
By default, the G-SDSU computes single-scattering properties through the Lorenz-Mie solution with an a
priori database of the complex refractive index. Since the Mie calculation is the exact analytical solution of
the Maxwell’s theory for a perfect spherical particle, it simply requires inputs of size parameter (X= πD/λ) and
refractive index database.

Microwave complex refractive indices of hydrometeors (e.g., water and pure ice) are derived through
laboratory experiments, and their value depends mostly on wavelength and slightly on temperature [Hufford,
1991]. For solid particle in the microwave ranges, if the size parameter is reasonably small (X~ 2: Rayleigh
regime, typically at low-frequencymicrowave spectrum), one can apply effective mixture solution (i.e., a fluffy
sphere approximation) for effective refractive index of mixture of ice and air [Bohren and Battan, 1980].
There are two approximations available in the G-SDSU: (i) the Maxwell-Garnet approximation that assumes
ice (air) matrix and oblique air (ice) inclusion and (ii) the effective medium approximation that assume
homogeneous mixing of ice and air [Bohren and Battan, 1980]. These approximations can be further applied

Journal of Geophysical Research: Atmospheres 10.1002/2013JD021424

MATSUI ET AL. ©2014. American Geophysical Union. All Rights Reserved. 8469



to the mixed-phase (melting) particles and result in quite different magnitudes for simulating the melting
band in radar reflectivity [Olson et al., 2001a]. The effective mixture approximation is inaccurate, when
the size parameter becomes larger than ~2 and more. In this case, a more sophisticated single-scattering
model is required in order to treat nonspherical particle shape.

Visible-wavelength complex refractive indices of aerosols significantly vary between different chemical
compositions of particles. Hygroscopic particles are generally capped andmixed with liquid water in a humid
atmosphere. Thus for nearly saturated environment, the refractive index of hygroscopic aerosols becomes
close to those of water particles, and creating haze in the atmosphere. Refractive index of mineral dust
depends on mineral dust composition [Nousiainen, 2009]. The G-SDSU approach, adapted from the R-STAR
module, generally utilizes the refractive index derived from the OPAC [Hess et al., 1998] and other sources. It
should be noted that there are some uncertainties introduced by defining chemical compositions and
refractive index from the discrete aerosol categories, since aerosols are often characterized with multiple
chemical compositions [Lesins et al., 2002].

For either aerosols or hydrometeors, default options of Lorenz-Mie solution with the a priori database of
refractive index will give single-scattering efficiencies: extinction efficiency (Qext), scattering efficiency (Qscat),
moments of phase function (Pn), and backscattering efficiency (Qb). These single-scattering efficiencies
are integrated with their PSD function to derive PSD-integrated extinction, single-scattering albedo, and nth
moment of phase function:

k ¼ π
4∫D

2QextN Dð ÞdD

eω ¼ π
4k ∫D

2QscatN Dð ÞdD

pn ¼
∫D2Pn Dð ÞQscat Dð ÞN Dð ÞdD

∫D2Qscat Dð ÞN Dð ÞdD

σb ¼ ∫D
2Pn D;Θ ¼ πð ÞQscat Dð ÞN Dð ÞdD
4π∫D2Qscat Dð ÞN Dð ÞdD

Gaseous extinction and absorption are parameterized by the k-distribution method in visible IR spectrum
using the HITRAN 2004 database [Sekiguchi and Nakajima, 2008] and by empirical fitting parameters in
the microwave spectrum [Rosenkranz, 1993]. H2O, CO2, O3, N2O, CO, CH4, and O2 are considered over the
visible IR spectrum, while H2O, N2, and O2 are considered over microwave spectrum. Because our simulation,
in this manuscript, prognoses only water vapor (H2O), vertical profiles of other gaseous constituent are
interpolated at the model pressure levels from climatological values.

Then, for each grid element, bulk single-scattering properties are summed over all gaseous species,
hydrometer habits, and aerosol types at frequency ν.

kν ¼
X

kgas þ
X

kaer þ
X

khyd

eων ¼ 1
kν

X
kgaseωgas þ

X
kaereωaer þ

X
khydeωhyd

	 


pν ¼
1

kνeων

X
kgaseωgaspn;gas þ

X
kaereωaerpn;aer þ

X
khydeωhydPn;hyd

	 


σν ¼ 1
kνeων

X
kgaseωgasσgas þ

X
kaereωaerσaer þ

X
khydeωhydσhyd

	 


Bulk single-scattering properties are separately calculated for the visible IR and microwave spectrums,
using the model-consistent PSDs. For example, the visible IR simulator (section 3.1) and the lidar simulator
(section 3.4) share an identical method for computing single-scattering properties at visible IR spectrum. The
microwave simulator (section 3.2) and the radar simulator (section 3.4) share an identical method for
computing single-scattering properties across the microwave spectrum.
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Lastly, quantitative uncertainties of the radiance-based evaluation approach are attributed primarily to the
uncertainties of the forward models (Modelers must also understand that these uncertainties in the
forward model exist in all satellite retrieval algorithms as well.), including computation of single-scattering
properties, surface boundary conditions, and RTMs. These forward model components can be improved
through close collaboration with the satellite community. Here are, for example, several future improvements
list in the G-SDSU:

1. The visible IR simulator: Future improvements include single-scattering properties of nonspherical parti-
cles [Yang et al., 2005], 3-D effect of radiative transfer at the edge of clouds [Cahalan et al., 2005],
and surface boundary conditions (albedo and bidirectional reflectance distribution function) for the visible
spectrum [Bicheron and Leroy, 2000] and surface emissivity for the IR spectrum [Hulley and Hook, 2011].

2. The lidar simulator: Future improvements include single-scattering properties of nonspherical particles
and realistic representation of depolarization ratio [Macke et al., 1996] and multiple-scattering effect
of backscatter in the cloud profile [Hu et al., 2006].

3. The microwave simulator: Future improvements include single-scattering properties of nonspherical par-
ticles at high-frequency channels [Liu, 2008] and better dynamic land surface emissivity at low-frequency
channels [Skofronick-Jackson et al., 2004].

4. The radar simulator: Future improvements include single-scattering properties of nonspherical particles at
high-frequency channels [Okamoto et al., 1995] and multiple-scattering effect of backscatter (W band)
in the deep convective core [Battaglia et al., 2008].

These upgrades and their impact on model evaluation are subject to future studies. Single-scattering
databases of nonspherical parameters are being incorporated after careful analysis of the observed satellite
signals and in situ observations, since neither the satellite nor modeling community can make perfect
assumptions in the shapes of nonspherical particles. Fast multiple-scattering models [Hogan and Battaglia,
2008] will be incorporated to the lidar and the radar simulator in the future.
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